×

Automorphism-invariant modules. (English. Russian original) Zbl 1331.16002

J. Math. Sci., New York 206, No. 6, 694-698 (2015); translation from Fundam. Prikl. Mat. 18, No. 4, 129-135 (2013).
In this paper, the author studies automorphism-invariant modules. He proves that for a ring \(A\), every nonsingular, automorphism-invariant right \(A\)-module is injective if and only if the factor ring \(A/G(A_A)\) is right strongly semiprime where \(G(A_A)\) is the right Goldie radical of the ring \(A\). This result is an improvement of the result of Kutami and Oshiro. He also proves that if \(A\) is a prime ring then every nonsingular, automorphism-invariant right \(A\)-module is quasi-injective. This is an improvement of a result of Er, Singh and Srivastava. To prove these two results, the author derives some properties of a nonsingular, square-free, automorphism-invariant right \(A\)-module for a ring \(A\).

MSC:

16D50 Injective modules, self-injective associative rings
16W20 Automorphisms and endomorphisms
16N60 Prime and semiprime associative rings
Full Text: DOI

References:

[1] A. Alahmadi, N. Er, and S. K. Jain, “Modules which are invariant under monomorphisms of their injective hulls,” J. Aust. Math. Soc., 79, No. 3, 2265-2271 (2005). · Zbl 1104.16003 · doi:10.1017/S1446788700010946
[2] S. E. Dickson and K. R. Fuller, “Algebras for which every indecomposable right module is invariant in its injective envelope,” Pac. J. Math., 31, No. 3, 655-658 (1969). · Zbl 0185.09301 · doi:10.2140/pjm.1969.31.655
[3] N. Er, S. Singh, and A. K. Srivastava, “Rings and modules which are stable under automorphisms of their injective hulls,” J. Algebra, 379, 223-229 (2013). · Zbl 1287.16007 · doi:10.1016/j.jalgebra.2013.01.021
[4] P. A. Guil Asensio and A. K. Srivastava, “Automorphism-invariant modules satisfy the exchange property,” J. Algebra, 388, 101-106 (2013). · Zbl 1296.16002 · doi:10.1016/j.jalgebra.2013.05.003
[5] D. Handelman, “Strongly semiprime rings,” Pacific J. Math., 60, No. 1, 115-122 (1975). · Zbl 0276.16009
[6] S. K. Jain and S. Singh, “Quasi-injective and pseudo-injective modules,” Can. Math. Bull., 18, No. 3, 359-366 (1975). · Zbl 0326.16023 · doi:10.4153/CMB-1975-065-3
[7] R. E. Johnson and F. T. Wong, “Quasi-injective modules and irreducible rings,” J. London Math. Soc., 36, 260-268 (1961). · Zbl 0103.02203 · doi:10.1112/jlms/s1-36.1.260
[8] M. Kutami and K. Oshiro, “Strongly semiprime rings and nonsingular quasi-injective modules,” Osaka J. Math., 17, 41-50 (1980). · Zbl 0425.16005
[9] T. K. Lee and Y. Zhou, “Modules which are invariant under automorphisms of their injective hulls,” J. Algebra Appl., 6, No. 2 (2013) · Zbl 1263.16005
[10] Singh, S.; Srivastava, AK, Rings of invariant module type and automorphism-invariant modules (2014), Providence · Zbl 1296.16006
[11] M. L. Teply, “Pseudo-injective modules which are not quasiinjective,” Proc. Am. Math. Soc., 49, No. 2, 305-310 (1975). · Zbl 0303.16013 · doi:10.1090/S0002-9939-1975-0366977-3
[12] A. Tuganbaev, Semidistributive Modules and Rings, Kluwer Academic, Dordrecht (1998). · Zbl 0909.16001 · doi:10.1007/978-94-011-5086-6
[13] A. A. Tuganbaev, “Automorphisms of submodules and their extension,” Discrete Math. Appl., 25, No. 1, 115-124 (2013). · Zbl 1282.16005
[14] A. A. Tuganbaev, “Characteristic submodules of injective modules,” Discrete Math. Appl., 23, No. 2, 203-209 (2013). · Zbl 1293.16003 · doi:10.1515/dma-2013-014
[15] R. Wisbauer, Foundations of Module and Ring Theory, Gordon and Breach, Philadelphia (1991). · Zbl 0746.16001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.