×

Thermo-visco-elasticity for Norton-Hoff-type models. (English) Zbl 1330.74043

Summary: Our research is directed to a quasi-static evolution of the thermo-visco-elastic model. We assume that the material is subject to two kinds of mechanical deformations: elastic and inelastic. Moreover, our analysis captures the influence of the temperature on the visco-elastic properties of the body. The novelty of the paper is the consideration of the thermodynamically consistent model to describe this kind of phenomena related with a hardening rule of Norton-Hoff type. We provide the proof of existence of solutions to thermo-visco-elastic model in a simplified setting, namely the thermal expansion effects are neglected. Consequently, the coupling between the temperature and the displacement occurs only in the constitutive function for the evolution of the visco-elastic strain.

MSC:

74D10 Nonlinear constitutive equations for materials with memory
74F05 Thermal effects in solid mechanics
74S05 Finite element methods applied to problems in solid mechanics
35Q74 PDEs in connection with mechanics of deformable solids
65M70 Spectral, collocation and related methods for initial value and initial-boundary value problems involving PDEs

References:

[1] Green, A. E.; Naghdi, P. M., A general theory of an elastic-plastic continuum, Arch. Ration. Mech. Anal., 18, 251-281 (1965) · Zbl 0133.17701
[2] Landau, L. D.; Lifshitz, E. M., Theory of Elasticity (1970), Pergamon Press · Zbl 0178.28704
[3] Gwiazda, P.; Klawe, F. Z.; Świerczewska-Gwiazda, A., Thermo-visco-elasticity for the Mróz’s model in the framework of thermodynamically complete systems, Discrete Contin. Dyn. Syst. Ser. S, 7, 5, 981-991 (2014) · Zbl 1302.35357
[4] Alber, H.-D.; Chełmiński, K., Quasistatic problems in viscoplasticity theory II: Models with nonlinear hardening, Math. Models Methods Appl. Sci., 17, 02, 189-213 (2007) · Zbl 1114.74007
[5] Bartczak, L., Mathematical analysis of a thermo-visco-plastic model with Bodner-Partom constitutive equations, J. Math. Anal. Appl., 385, 2, 961-974 (2012) · Zbl 1238.74010
[6] Chełmiński, K.; Gwiazda, P., On the model of Bodner-Partom with nonhomogeneous boundary data, Math. Nachr., 214, 1, 5-23 (2000) · Zbl 0965.35169
[7] Chełmiński, K., On large solutions for the quasistatic problem in non-linear viscoelasticity with the constitutive equations of Bodner-Partom, Math. Methods Appl. Sci., 19, 12, 933-942 (1996) · Zbl 0867.35105
[8] Brokate, M.; Krejčí, P.; Rachinskii, D., Some analytical properties of the multidimensional continuous Mróz model of plasticity. recent advances in structural modelling and optimization, Control Cybernet., 27, 2, 199-215 (1998) · Zbl 0967.74016
[9] Hömberg, D., A mathematical model for induction hardening including mechanical effects, Nonlinear Anal. RWA, 5, 1, 55-90 (2004) · Zbl 1330.74044
[10] Chełmiński, K.; Racke, R., Mathematical analysis of a model from thermoplasticity with kinematic hardening, J. Appl. Anal., 12, 37-57 (2006) · Zbl 1123.35077
[11] Alber, H.-D., (Materials with Memory. Materials with Memory, Lecture Notes in Math., vol. 1682 (1998), Springer: Springer Berlin, Heidelberg, New York) · Zbl 0977.35001
[12] Barbu, V., Nonlinear Semigroups and Differential Equations in Banach Spaces (1976), Noordhoff International Publishing · Zbl 0328.47035
[14] Málek, J.; Nečas, J.; Rokyta, M.; Růžička, M., Weak and Measure-Valued Solutions to Evolutionary PDEs (1996), Chapman & Hall: Chapman & Hall London · Zbl 0851.35002
[15] Gwiazda, P.; Świerczewska, A., Large eddy simulation turbulence model with Young measures, Appl. Math. Lett., 18, 8, 923-929 (2005) · Zbl 1125.76033
[16] Świerczewska, A., A dynamical approach to large eddy simulation of turbulent flows: existence of weak solutions, Math. Methods Appl. Sci., 29, 1, 99-121 (2006) · Zbl 1080.76035
[17] Chełmiński, K.; Gwiazda, P., Convergence of coercive approximations for strictly monotone quasistatic models in inelastic deformation theory, Math. Methods Appl. Sci., 30, 12, 1357-1374 (2007) · Zbl 1121.35135
[18] Duvaut, G.; Lions, J. L., Les Inéquations en Mécanique et en Physique (1972), Dunod: Dunod Paris · Zbl 0298.73001
[19] Johnson, C., Existence theorems for plasticity problem, J. Math. Pures Appl., 55, 431-444 (1976) · Zbl 0351.73049
[20] Johnson, C., On plasticity with hardening, J. Math. Anal. Appl., 62, 325-336 (1978) · Zbl 0373.73049
[21] Nečas, J.; Hlaváček, I., Mathematical Theory of Elastic and Elasto-Plastic Bodies: An Introduction (1980), Elsevier Scientific Publisher Company
[22] Suquet, P., Existence and regularity of solution for plasticity problems, (Variational Methods in Solid Mechanics (1980), Pergamon Press: Pergamon Press Oxford)
[23] Suquet, P., Sur les équations de la plasticité: existence et régularité des solutions, J. Méc., 20, 3-39 (1981) · Zbl 0474.73030
[24] Suquet, P., Plasticité et homogénéisation (1982), (Ph.D. thesis) · Zbl 0516.73016
[25] Temam, R., Mathematical Problems in Plasticity (1984), Gauthier-Villars: Gauthier-Villars Paris, New York · Zbl 0457.73017
[26] Temam, R., A generalized Norton-Hoff model and the Prandtl-Reuss law of plasticity, Arch. Ration. Mech. Anal., 95, 2, 137-183 (1986) · Zbl 0615.73035
[28] Chełmiński, K.; Gwiazda, P., Nonhomogeneous initial-boundary value problems for coercive and self-controlling models of monotone type, Contin. Mech. Thermodyn., 12, 217-234 (2000) · Zbl 1003.74033
[29] Chełmiński, K.; Gwiazda, P., Convergence of coercive approximations for strictly monotone quasistatic models in inelastic deformation theory, Math. Methods Appl. Sci., 30, 12, 1357-1374 (2007) · Zbl 1121.35135
[30] Jiang, S.; Racke, R., Evolution Equations in Thermoelasticity (2000), Chapman & Hall/CRC: Chapman & Hall/CRC Boca Raton · Zbl 0968.35003
[31] Bartels, S.; Roubíček, T., Thermo-visco-elasticity with rate-independent plasticity in isotropic materials undergoing thermal expansion, ESAIM Math. Model. Numer. Anal., 45, 477-504 (2011) · Zbl 1267.74037
[32] Boccardo, L.; Gallouët, T., Non-linear elliptic and parabolic equations involving measure data, J. Funct. Anal., 87, 1, 149-169 (1989) · Zbl 0707.35060
[33] Bulíček, M., Navier’s slip and evolutionary Navier-Stokes-Fourier-like systems with pressure, shear-rate and temperature dependent viscosity (2006), (Ph.D. thesis)
[34] Bulíček, M.; Feireisl, E.; Málek, J., A Navier-Stokes-Fourier system for incompressible fluids with temperature dependent material coefficients, Nonlinear Anal. RWA, 10, 2, 992-1015 (2009) · Zbl 1167.76316
[35] Bulíček, M.; Pustějovská, P., On existence analysis of steady flows of generalized Newtonian fluids with concentration dependent power-law index, J. Math. Anal. Appl., 402, 1, 157-166 (2013) · Zbl 1308.76068
[36] Temam, R. M.; Miranville, A. M., Mathematical Modeling in Continuum Mechanics (2005), Cambridge University Press · Zbl 1077.76001
[37] Blanchard, D.; Murat, F., Renormalised solutions of nonlinear parabolic problems with L1 data: existence and uniqueness, Proc. Roy. Soc. Edinburgh Sect. A, 127, 1137-1152 (1997) · Zbl 0895.35050
[38] Blanchard, D., Truncations and monotonicity methods for parabolic equations, Nonlinear Anal. TMA, 21, 10, 725-743 (1993) · Zbl 0796.35077
[39] Sleight, A., Materials science: Zero-expansion plan, Nature, 425, 674-676 (2003)
[40] Salvador, J. R.; Guo, F.; Hogan, T.; Kanatzidis, M. G., Zero thermal expansion in ybgage due to an electronic valence transition, Nature, 425, 702-705 (2003)
[41] Zhang, Y.; Islam, Z.; Ren, Y.; Parilla, P. A.; Ahrenkiel, S. P.; Lee, P. L.; Mascarenhas, A.; McNevin, M. J.; Naumov, I.; Fu, H. X.; Huang, X. Y.; Li, J., Zero thermal expansion in a nanostructured inorganic-organic hybrid crystal, Phys. Rev. Lett., 99, 215901 (2007)
[42] Li, J.; Bi, W.; Ki, W.; Huang, X.; Reddy, S., Nanostructured crystals: Unique hybrif semiconduxtors exhibiting nearly zero and tunable uniaxial thermal expansion behavior, J. Am. Chem. Soc., 129, 14140-14141 (2007)
[43] Chen, J.; Xing, X.; Sun, C.; Hu, P.; Yu, R.; Wang, X.; Li, L., Zero thermal expansion in pbtio3-based perovskites, J. Am. Chem. Soc., 130, 1144-1145 (2008)
[44] Song, X.; Sun, Z.; Huang, Q.; Rettenmayr, M.; Liu, X.; Seyring, M.; Li, G.; Rao, G.; Yin, F., Adjustable zero thermal expansion in antiperovskite manganese nitride, Adv. Mater., 23, 40, 4690-4694 (2011)
[45] Takenaka, K.; Takagi, H., Zero thermal expansion in a pure-form antiperovskite manganese nitride, Appl. Phys. Lett., 94, 13, 131904 (2009)
[46] Margadonna, S.; Prassides, K.; Fitch, A. N., Zero thermal expansion in a prussian blue analogue, J. Am. Chem. Soc., 126, 15390-15391 (2004)
[47] Phillips, A. E.; Halder, G. J.; Chapman, K. W.; Goodwin, A. L.; Kepert, C. J., Zero thermal expansion in a flexible, stable framework: Tetramethylammonium copper(i) zinc(ii) cyanide, J. Am. Chem. Soc., 132, 10-11 (2010)
[48] Mary, T. A.; Evans, J. S.; Vogt, O.; Sleight, A. W., Negative thermal expansion from 0.3 to 1050 kelvin in \(ZrW_2 O_8\), Science, 272, 90-92 (1996)
[49] Valent, T., Boundary Value Problems of Finite Elasticity: Local Theorems on Existence, Uniqueness, and Analytic Dependence on Data (2011), Springer Publishing Company, Incorporated
[50] Alt, H. W., Lineare Funktionalanalysis (2006), Springer-Verlag · Zbl 1099.46001
[51] Strauss, W., Partial Differential Equations (2007), Wiley
[52] Zeidler, E., Nonlinear Functional Analysis II/B—Nonlinear Monotone Operators (1990), Springer-Verlag: Springer-Verlag Berlin, Heidelberg, New York · Zbl 0684.47029
[53] Evans, L. C., Partial Differential Equations (1998), American Math Society · Zbl 0902.35002
[54] Clain, S., Analyse mathématique et numérique d’un modèle de chauffage par induction (1994), Lausanne, (Ph.D. thesis)
[55] Roubíček, T., Nonlinear Partial Differential Equations with Applications (2005), Birkhauser Verlag · Zbl 1087.35002
[56] Gilbarg, D.; Trudinger, N. S., (Elliptic Partial Differential Equations of Second Order. Elliptic Partial Differential Equations of Second Order, Comprehensive Studies in Mathematics (1977), Springer-Verlag) · Zbl 0691.35001
[57] Giaquinta, M., Introduction to Regularity Theory for Nonlinear Elliptic Systems (1993), Birkhäuser · Zbl 0786.35001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.