×

Blow-up criteria of strong solutions to the Ericksen-Leslie system in \(\mathbb{R}^{3}\). (English) Zbl 1327.35319

In this interesting paper, the authors establish the local well-posedness and blow-up criteria of strong solutions to the Ericksen-Leslie system in \(\mathbb{R}^3\) for the Oseen-Frank model. This model is used in the static theory of nematic liquid crystals. There is a unit vector field \(u\) in a region \(\Omega \subset\mathbb{R}^3\) as well the Oseen-Frank density \(W (u, \nabla u)\) is \[ W (u, \nabla u) = k_1 (\mathrm{div} u)^2 + k_2 (u \cdot \mathrm{curl} u)^2 + k_3 |u \times \mathrm{curl} u|^2 + k_4 [\mathrm{tr}(\nabla u)^2 - (\mathrm{div} u)^2 ], \] where \(k_1\), \(k_2\), \(k_3\), \(k_4\) are positive constants. The free energy for the state \(u\in H^1(\Omega ;S^2)\) is defined by \(E(u;\Omega )=\int_{\Omega }W(u,\nabla u)dx\), then the Euler-Lagrange system for the Oseen-Frank energy \(E(u,\Omega )\) is determined. The dynamic motion of the liquid crystals is described by the Ericksen-Leslie system. Note that the divergence of \(\mathrm{tr}(\nabla u)^2 - (\mathrm{div} u)^2\) is free, therefore, \[ W (u, \nabla u) = a|\nabla u|^2 + V (u, \nabla u), \] where \(a = \min\{k_1, k_2, k_3 \} > 0\), and \[ V (u, \nabla u) = (k_1 - a)(\mathrm{div} u)^2 + (k_2 - a)(u \cdot \mathrm{curl} u)^2 + (k_3 - a)|u \times \mathrm{curl} u|^2. \] Having in mind the above stated notation, one may write the Ericksen-Leslie system containing a finite number of PDEs, that is, the Navier-Stokes system coupled with the gradient flow for the Oseen-Frank model, considered as an extension of the harmonic map flow. Here, the authors consider the Cauchy problem with some initial data to the Ericksen-Leslie system for the general Oseen-Frank model in \(\mathbb{R}^3\), as the velocity vector \(v_0\) (\(\mathrm{div} v_0=0\)) and the initial state \(u_0\) (\(|u_0|=1\)) are in the classes \(H^1(\mathbb{R}^3)\) and \(H^2(\mathbb{R}^3)\). The main result is that the above mentioned Cauchy problem has a unique solution \((u,v)\) in \(\mathbb{R}^3\times (0,T^{\ast })\) for some positive number \(T^{\ast }\) (the blowing up point) depending only on the initial data. The blow up criteria to strong solutions to the Ericksen-Leslie system are given. It is shown that strong solutions of the Ginzburg-Landau approximate system converge to strong solution of the Ericksen-Leslie system up to the maximal existence time. The blow-up effect is discussed as well.

MSC:

35Q35 PDEs in connection with fluid mechanics
35Q30 Navier-Stokes equations
35B44 Blow-up in context of PDEs

References:

[1] Adams R.A., Sobolev Spaces 140 (2003) · Zbl 1098.46001
[2] DOI: 10.1007/BF01212349 · Zbl 0573.76029 · doi:10.1007/BF01212349
[3] DOI: 10.1002/cpa.3160350604 · Zbl 0509.35067 · doi:10.1002/cpa.3160350604
[4] DOI: 10.1007/BF01161997 · Zbl 0652.58024 · doi:10.1007/BF01161997
[5] DOI: 10.2307/2373037 · Zbl 0122.40102 · doi:10.2307/2373037
[6] Evans L.C., Partial Differential Equations 19 (1998) · Zbl 0902.35002
[7] Eidel’man S., Parabolic Systems (1969)
[8] DOI: 10.1016/B978-0-12-025002-8.50012-9 · doi:10.1016/B978-0-12-025002-8.50012-9
[9] DOI: 10.1007/978-3-662-06218-0 · doi:10.1007/978-3-662-06218-0
[10] DOI: 10.1007/BF01238933 · Zbl 0611.35077 · doi:10.1007/BF01238933
[11] DOI: 10.1512/iumj.2004.53.2459 · Zbl 1129.35384 · doi:10.1512/iumj.2004.53.2459
[12] DOI: 10.1007/s00526-010-0331-5 · Zbl 1213.35014 · doi:10.1007/s00526-010-0331-5
[13] DOI: 10.1016/j.aim.2012.06.009 · Zbl 1260.35113 · doi:10.1016/j.aim.2012.06.009
[14] DOI: 10.1080/03605302.2012.659366 · Zbl 1247.35103 · doi:10.1080/03605302.2012.659366
[15] DOI: 10.1007/s00205-011-0476-1 · Zbl 1314.76010 · doi:10.1007/s00205-011-0476-1
[16] Ladyzhenskaya O. A., Linear and Qusilinear Equations of Parabolic Type (1968)
[17] DOI: 10.1016/B978-0-12-025004-2.50008-9 · doi:10.1016/B978-0-12-025004-2.50008-9
[18] DOI: 10.1002/(SICI)1097-0312(199803)51:3<241::AID-CPA2>3.0.CO;2-A · Zbl 0958.35102 · doi:10.1002/(SICI)1097-0312(199803)51:3<241::AID-CPA2>3.0.CO;2-A
[19] DOI: 10.1007/s00205-009-0278-x · Zbl 1346.76011 · doi:10.1007/s00205-009-0278-x
[20] DOI: 10.1002/cpa.3160480503 · Zbl 0842.35084 · doi:10.1002/cpa.3160480503
[21] DOI: 10.1007/s002050000102 · Zbl 0963.35158 · doi:10.1007/s002050000102
[22] DOI: 10.1007/BF00253344 · Zbl 0106.18302 · doi:10.1007/BF00253344
[23] DOI: 10.1007/BF01762360 · Zbl 0629.46031 · doi:10.1007/BF01762360
[24] DOI: 10.1007/BF02567432 · Zbl 0595.58013 · doi:10.1007/BF02567432
[25] Tian G., Comm. Anal. Geom. 7 pp 221– (1999) · Zbl 0939.35139 · doi:10.4310/CAG.1999.v7.n2.a1
[26] DOI: 10.1016/j.nonrwa.2010.10.010 · Zbl 1402.76021 · doi:10.1016/j.nonrwa.2010.10.010
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.