×

A linear-quadratic optimal control problem for mean-field stochastic differential equations in infinite horizon. (English) Zbl 1326.49051

Summary: A Linear-Quadratic (LQ, for short) optimal control problem is considered for mean-field stochastic differential equations with constant coefficients in an infinite horizon. The stabilizability of the control system is studied followed by the discussion of the well-posedness of the LQ problem. The optimal control can be expressed as a linear state feedback involving the state and its mean, through the solutions of two algebraic Riccati equations. The solvability of such kind of Riccati equations is investigated by means of the semi-definite programming method.

MSC:

49N10 Linear-quadratic optimal control problems
49J55 Existence of optimal solutions to problems involving randomness
49K45 Optimality conditions for problems involving randomness
49K40 Sensitivity, stability, well-posedness
49N35 Optimal feedback synthesis
60H10 Stochastic ordinary differential equations (aspects of stochastic analysis)
93E20 Optimal stochastic control
93D15 Stabilization of systems by feedback
90C22 Semidefinite programming

Software:

SDPT3

References:

[1] N. U. Ahmed, A semilinear McKean-Vlasov stochastic evolution equation in Hilbert space,, Stoch. Proc. Appl., 60, 65 (1995) · Zbl 0846.60060 · doi:10.1016/0304-4149(95)00050-X
[2] N. U. Ahmed, Controlled McKean-Vlasov equations,, Comm. Appl. Anal., 5, 183 (2001) · Zbl 1084.49506
[3] N. U. Ahmed, Nonlinear diffusion governed by McKean-Vlasov equation on Hilbert space and optimal control,, SIAM J. Control Optim., 46, 356 (2007) · Zbl 1141.93062 · doi:10.1137/050645944
[4] M. Ait Rami, Linear matrix inequalities, Riccati equations, and indefinite stochastic linear quadratic controls,, IEEE Transactions on Automatic Control, 45, 1131 (2000) · Zbl 0981.93080 · doi:10.1109/9.863597
[5] A. Albert, Conditions for positive and nonnegative definiteness in terms of pseudo-inverses,, SIAM J. Appl. Math., 17, 434 (1969) · Zbl 0265.15002 · doi:10.1137/0117041
[6] D. Andersson, A maximum principle for SDEs of mean-field type,, Appl. Math. Optim., 63, 341 (2011) · Zbl 1215.49034 · doi:10.1007/s00245-010-9123-8
[7] A. Ben-Israel, <em>Generalized Inverses</em>,, Springer-Verlag (2003)
[8] A. Bensoussan, <em>Representation and Control of Infinite Dimensional Systems</em>,, 2nd edition (2007) · Zbl 1117.93002 · doi:10.1007/978-0-8176-4581-6
[9] V. S. Borkar, McKean-Vlasov limit in portfolio optimization,, Stoch. Anal. Appl., 28, 884 (2010) · Zbl 1232.91607 · doi:10.1080/07362994.2010.482836
[10] S. Boyd, <em>Linear Matrix Inequality in Systems and Control Theory</em>,, SIAM (1994) · Zbl 0816.93004 · doi:10.1137/1.9781611970777
[11] R. Buckdahn, A general maximum principle for SDEs of mean-field type,, Applied Mathematics & Optimization, 64, 197 (2011) · Zbl 1245.49036 · doi:10.1007/s00245-011-9136-y
[12] R. Buckdahn, Mean-field backward stochastic differential equations: A limit approach,, Ann. Probab., 37, 1524 (2009) · Zbl 1176.60042 · doi:10.1214/08-AOP442
[13] R. Buckdahn, Mean-field backward stochastic differential equations and related partial differential equations,, Stoch. Process. Appl., 119, 3133 (2009) · Zbl 1183.60022 · doi:10.1016/j.spa.2009.05.002
[14] T. Chan, Dynamics of the McKean-Vlasov equation,, Ann. Probab., 22, 431 (1994) · Zbl 0798.60029 · doi:10.1214/aop/1176988866
[15] T. Chiang, McKean-Vlasov equations with discontinuous coefficients,, Soochow J. Math., 20, 507 (1994) · Zbl 0817.60071
[16] D. Crisan, Approximate McKean-Vlasov representations for a class of SPDEs,, Stochastics, 82, 53 (2010) · Zbl 1211.60022 · doi:10.1080/17442500902723575
[17] D. A. Dawson, Critical dynamics and fluctuations for a mean-field model of cooperative behavior,, J. Statist. Phys., 31, 29 (1983) · doi:10.1007/BF01010922
[18] D. A. Dawson, Large deviations from the McKean-Vlasov limit for weakly interacting diffusions,, Stochastics, 20, 247 (1987) · Zbl 0613.60021 · doi:10.1080/17442508708833446
[19] L. El Ghaoui, Robust state-feedback stabilization of jump linear systems via LIMs,, Int. J. Robust and Nonlinear Contr., 6, 1015 (1996) · Zbl 0863.93067 · doi:10.1002/(SICI)1099-1239(199611)6:9/10<1015::AID-RNC266>3.0.CO;2-0
[20] J. Gärtner, On the Mckean-Vlasov limit for interacting diffusions,, Math. Nachr., 137, 197 (1988) · Zbl 0678.60100 · doi:10.1002/mana.19881370116
[21] C. Graham, McKean-Vlasov Ito-Skorohod equations, and nonlinear diffusions with discrete jump sets,, Stoch. Proc. Appl., 40, 69 (1992) · Zbl 0749.60096 · doi:10.1016/0304-4149(92)90138-G
[22] M. Grant, Graph implementations for nonsmooth convex programs,, Recent Advances in Learning and Control (a tribute to M. Vidyasagar), 371, 95 (2008) · Zbl 1205.90223 · doi:10.1007/978-1-84800-155-8_7
[23] M. Huang, Large population stochastic dynamic games: Closed-loop McKean-Vlasov systems and the Nash certainty equivalence principle,, Comm. Inform. Systems, 6, 221 (2006) · Zbl 1136.91349 · doi:10.4310/CIS.2006.v6.n3.a5
[24] M. Kac, Foundations of kinetic theory,, Proc. 3rd Berkeley Sympos. Math. Statist. Prob., 3, 171 (1956) · Zbl 0072.42802
[25] P. E. Kloeden, Stochastic differential equations with nonlocal sample dependence,, Stoch. Anal. Appl., 28, 937 (2010) · Zbl 1205.60131 · doi:10.1080/07362994.2010.515194
[26] P. M. Kotelenez, Macroscopic limit for stochastic partial differential equations of McKean-Vlasov type,, Prob. Theory Rel. Fields, 146, 189 (2010) · Zbl 1189.60123 · doi:10.1007/s00440-008-0188-0
[27] J. M. Lasry, Mean field games,, Japan J. Math., 2, 229 (2007) · Zbl 1156.91321 · doi:10.1007/s11537-007-0657-8
[28] X. Li, Indefinite stochastic linear quadratic control with Markovian jumps in infinite time horizon,, Journal of Global Optimization, 27, 149 (2003) · Zbl 1031.93155 · doi:10.1023/A:1024887007165
[29] H. P. McKean, A class of Markov processes associated with nonlinear parabolic equations,, Proc. Natl. Acad. Sci. USA, 56, 1907 (1966) · Zbl 0149.13501 · doi:10.1073/pnas.56.6.1907
[30] T. Meyer-Brandis, A mean-field stochastic maximum principle via Malliavin calculus,, Stochastics, 84, 643 (2012) · Zbl 1252.49039 · doi:10.1080/17442508.2011.651619
[31] J. Y. Park, Controllability of McKean-Vlasov stochastic integrodifferential evolution equation in Hilbert spaces,, Numer. Funct. Anal. Optim., 29, 1328 (2008) · Zbl 1158.93008 · doi:10.1080/01630560802580679
[32] R. Penrose, A generalized inverse of matrices,, Proc. Cambridge Philos. Soc., 51, 406 (1955) · Zbl 0065.24603 · doi:10.1017/S0305004100030401
[33] M. Scheutzow, Uniqueness and non-uniqueness of solutions of Vlasov-McKean equations,, J. Austral. Math. Soc., 43, 246 (1987) · Zbl 0625.60062 · doi:10.1017/S1446788700029384
[34] R. H. Tutuncu, Solving semidefinite-quadratic-linear programs using SDPT3,, Mathematical Programming Ser. B, 95, 189 (2003) · Zbl 1030.90082 · doi:10.1007/s10107-002-0347-5
[35] L. Vandenerghe, Semidefinite programming,, SIAM Rev., 38, 49 (1996) · Zbl 0845.65023 · doi:10.1137/1038003
[36] A. Yu. Veretennikov, On ergodic measures for McKean-Vlasov stochastic equations,, in Monte Carlo and quasi-Monte Carlo methods 2004, 471 (2004) · Zbl 1098.60056 · doi:10.1007/3-540-31186-6_29
[37] J. Yong, Linear-quadratic optimal control problems for mean-field stochastic differential equations,, SIAM J. Control Optim., 51, 2809 (2013) · Zbl 1275.49060 · doi:10.1137/120892477
[38] J. Yong, <em>Stochastic Controls: Hamiltonian Systems and HJB Equations</em>,, Applications of Mathematics (New York) (1999) · Zbl 0943.93002 · doi:10.1007/978-1-4612-1466-3
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.