×

Odd perfect numbers, Diophantine equations, and upper bounds. (English) Zbl 1325.11009

A classical problem in number theory asks if there are any odd perfect numbers. The author gives a new bound for the odd perfect numbers. Assume that \(N\) is an odd perfect number with \(k\) distinct prime divisors. Denote by \(P\) the largest prime divisor of \(N\). The author has formerly proved [Math. Comput. 76, No. 260, 2109–2126 (2007; Zbl 1142.11086)] that \(k\geq 9\) and \(N<2^{4^k}\). Combining theoretical results with computer calculations, in the present paper among others he shows, as a corollary of the main result, that \(10^{12}P^2N<2^{4^k}\).

MSC:

11A25 Arithmetic functions; related numbers; inversion formulas
11Y50 Computer solution of Diophantine equations
11Y70 Values of arithmetic functions; tables

Citations:

Zbl 1142.11086
Full Text: DOI

References:

[1] Brent, R. P.; Cohen, G. L.; te Riele, H. J. J., Improved techniques for lower bounds for odd perfect numbers, Math. Comp., 57, 196, 857-868 (1991) · Zbl 0736.11004 · doi:10.2307/2938723
[2] Chein, Joseph E. Z., An Odd Perfect Number has at Least 8 Prime Factors, 53 pp. (1979), ProQuest LLC, Ann Arbor, MI
[3] Chen, Yong-Gao, Improved upper bounds for odd multiperfect numbers, Bull. Aust. Math. Soc., 89, 3, 353-359 (2014) · Zbl 1301.11004 · doi:10.1017/S0004972713000488
[4] Cook, R. J., Bounds for odd perfect numbers. Number theory, Ottawa, ON, 1996, CRM Proc. Lecture Notes 19, 67-71 (1999), Amer. Math. Soc.: Providence, RI:Amer. Math. Soc. · Zbl 0928.11003
[5] Dittmer, Samuel J., Spoof odd perfect numbers, Math. Comp., 83, 289, 2575-2582 (2014) · Zbl 1370.11005 · doi:10.1090/S0025-5718-2013-02793-7
[6] Hagis, Peter, Jr., Outline of a proof that every odd perfect number has at least eight prime factors, Math. Comp., 35, 151, 1027-1032 (1980) · Zbl 0444.10004 · doi:10.2307/2006211
[7] Heath-Brown, D. R., Odd perfect numbers, Math. Proc. Cambridge Philos. Soc., 115, 2, 191-196 (1994) · Zbl 0805.11005 · doi:10.1017/S0305004100072030
[8] Iannucci, Douglas E., The second largest prime divisor of an odd perfect number exceeds ten thousand, Math. Comp., 68, 228, 1749-1760 (1999) · Zbl 0927.11002 · doi:10.1090/S0025-5718-99-01126-6
[9] Iannucci, Douglas E., The third largest prime divisor of an odd perfect number exceeds one hundred, Math. Comp., 69, 230, 867-879 (2000) · Zbl 0973.11111 · doi:10.1090/S0025-5718-99-01127-8
[10] Keller, Wilfrid; Richstein, J{\"o}rg, Solutions of the congruence \(a^{p-1}\equiv 1\pmod{p^r} \), Math. Comp., 74, 250, 927-936 (electronic) (2005) · Zbl 1137.11301 · doi:10.1090/S0025-5718-04-01666-7
[11] Mossinghoff, Michael J., Wieferich pairs and Barker sequences, Des. Codes Cryptogr., 53, 3, 149-163 (2009) · Zbl 1228.11032 · doi:10.1007/s10623-009-9301-3
[12] Nielsen, Pace P., An upper bound for odd perfect numbers, Integers, 3, A14, 9 pp. (2003) · Zbl 1085.11003
[13] Nielsen, Pace P., Odd perfect numbers have at least nine distinct prime factors, Math. Comp., 76, 260, 2109-2126 (2007) · Zbl 1142.11086 · doi:10.1090/S0025-5718-07-01990-4
[14] Ochem, Pascal; Rao, Micha{\"e}l, Odd perfect numbers are greater than \(10^{1500} \), Math. Comp., 81, 279, 1869-1877 (2012) · Zbl 1263.11005 · doi:10.1090/S0025-5718-2012-02563-4
[15] Pomerance, Carl, Odd perfect numbers are divisible by at least seven distinct primes, Acta Arith., 25, 265-300 (1973/74) · Zbl 0247.10007
[16] Voight, John, On the nonexistence of odd perfect numbers. MASS selecta, 293-300 (2003), Amer. Math. Soc.: Providence, RI:Amer. Math. Soc. · Zbl 1083.11008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.