×

Maximizers for Gagliardo-Nirenberg inequalities and related non-local problems. (English) Zbl 1320.46026

Summary: In this paper we study the existence of maximizers for two families of interpolation inequalities, namely a generalized Gagliardo-Nirenberg inequality and a new inequality involving the Riesz energy. Two basic tools in our argument are a generalization of Lieb’s Translation Lemma and a Riesz energy version of the Brézis-Lieb lemma.

MSC:

46E35 Sobolev spaces and other spaces of “smooth” functions, embedding theorems, trace theorems
26D10 Inequalities involving derivatives and differential and integral operators

References:

[1] Bahouri, H., Chemin, J.-Y., Danchin, R.: Fourier Analysis and Nonlinear Partial Differential Equations. Springer, New York (2011) · Zbl 1227.35004 · doi:10.1007/978-3-642-16830-7
[2] Blanchard, P., Bruening, E.: Mathematical Methods in Physics: Distributions, Hilbert Space Operators, and Variational Methods. In: Progress in Mathematical Physics, vol. 26. Birkhäuser, Basel (2002) · Zbl 0356.35028
[3] Bez, N., Rogers, K.: A sharp Strichartz estimate for the wave equation with data in the energy space. J. Eur. Math. Soc. 15(3), 805-823 (2013). doi:10.4171/JEMS/377 · Zbl 1273.35066
[4] Bellazzini, J., Ozawa, T., Visciglia, N.: Ground states for semi-relativistic Schrödinger-Poisson-Slater energies. arxiv:1103.2649 · Zbl 1392.35129
[5] Bogachev, V.I.: Measure Theory. Springer, Berlin (2007) · Zbl 1120.28001 · doi:10.1007/978-3-540-34514-5
[6] Brézis, H., Lieb, E.H.: A relation between pointwise convergence of functions and convergence of functionals. Proc. Amer. Math. Soc. 88(3), 486-490 (1983) · Zbl 0526.46037 · doi:10.2307/2044999
[7] Cazenave, T.: An introduction to semilinear elliptic equations. Editora do IM-UFRJ, Rio de Janeiro (2009)
[8] Cordero-Erausquin, D., Nazaret, B., Villani, C.: A mass-transportation approach to sharp sobolev and gagliardo-nirenberg inequalities. Adv. Math. 182(2), 307-332 (2004) · Zbl 1048.26010 · doi:10.1016/S0001-8708(03)00080-X
[9] Christ, M., Shao, S.: Existence of extremals for a Fourier restriction inequality. In: Analysis and PDE (to appear) · Zbl 1273.42009
[10] Christ, F.M., Weinstein, M.I.: Dispersion of small amplitude solutions of the generalized korteweg-de vries equation. J. Funct. Anal. 100(1), 87109 (1991) · Zbl 0743.35067 · doi:10.1016/0022-1236(91)90103-C
[11] del Pino, M., Dolbeault, J.: Best constants for gagliardo-nirenberg inequalities and application to nonlinear diffusions. J. Math. Pures Appl. (9) 81(9), 847-875 (2002) · Zbl 1112.35310 · doi:10.1016/S0021-7824(02)01266-7
[12] Oliveira e Silva, D.: Extremizers for Fourier restriction inequalities: convex arcs. arXiv:1210.0583 · Zbl 1369.42009
[13] Fanelli, L., Vega, L., Visciglia, N.: On the existence of maximizers for a family of restriction theorems. Bull. Lond. Math. Soc. 43(4), 811-817 (2011) · Zbl 1225.42012 · doi:10.1112/blms/bdr014
[14] Fanelli, L., Vega, L., Visciglia, N.: Existence of maximizers for Sobolev-Strichartz inequalities. Adv. Math. 229, 1912-1923 (2012) · Zbl 1235.35012
[15] Fanelli, L., Visciglia, N.: The lack of compactness in the Sobolev-Strichartz inequalities. J. Math. Pures Appl. 99, 309-320 (2013) · Zbl 1266.35024
[16] Fibich, G., Ilan, B., Papanicolau, G.: Self-focusing with fourth-order dispersion. SIAM J. Appl. Math. 62, 1437-1462 (2002) · Zbl 1003.35112 · doi:10.1137/S0036139901387241
[17] Foschi, D.: Maximizers for the Strichartz inequality. J. Eur. Math. Soc. 9(4), 739-774 (2007) · Zbl 1231.35028
[18] Frank, R.L., Lieb, E.H.: Sharp constants in several inequalities on the Heisenberg group. Ann. Math. 176, 349-381 (2012) · Zbl 1252.42023
[19] Fröhlich, J., Lieb, E.H., Loss, M.: Stability of Coulomb systems with magnetic fields. i. the one-electron atom. Comm. Math. Phys. 104(2), 251-270 (1986) · Zbl 0595.35098
[20] Grafakos, L., Oh, S.: The Kato-Ponce inequality. arxiv:1303.5144 · Zbl 1301.42026
[21] Gérard, P.: Description of the lack of compactness for the Sobolev imbedding. ESAIM Control Optim. Calc. Var. 3, 213-233 (1998) · Zbl 0907.46027
[22] Gérard, P., Meyer, Y., Oru, F.: Inégalités de Sobolev précisées, (French., Séminaire sur les Équations aux Dérivées Partielles, 1996-1997, Exp. No. IV, École Polytech. Palaiseau (1997) · Zbl 1066.46501
[23] Ginibre, J., Velo, G.: The global Cauchy problem for the nonlinear klein-gordon equation. Math. Z. 189(4), 487-505 (1985) · Zbl 0549.35108
[24] Gressmann, P.T., Krieger, J., Strain, R.M.: A non-local inequality and global existence. Adv. Math 230, 642-648 (2012) · Zbl 1248.35005 · doi:10.1016/j.aim.2012.02.017
[25] Keraani, S.: On the defect of compactness for the Strichartz estimates of the Schrödinger equations. J. Differ. Equ. 175, 353-392 (2001) · Zbl 1038.35119
[26] Lieb, E.H.: Existence and uniqueness of the minimizing solution of Choquard’s nonlinear equation. Stud. Appl. Math. 57(2), 93-105 (1976/77) · Zbl 0369.35022
[27] Lieb, E.H.: Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities. Ann. Math. 118, 349-374 (1983) · Zbl 0527.42011
[28] Lieb, E.H.: On the lowest eigenvalue of the Laplacian for the intersection of two domains. Invent. Math. 74, 441-448 (1983) · Zbl 0538.35058
[29] Lieb, E.H., Loss, M.: Analysis. In: Graduate Studies in Mathematics, vol. 14. AMS, Providence (2001) · Zbl 0966.26002
[30] Lieb, E.H., Oxford, S.: An improved lower bound on the indirect Coulomb energy. In. J. Quant. Chem. 19, 427-439 (1981)
[31] Lions, P.-L.: The concentration-compactness principle in the calculus of variations. The locally compact case. Ann. Inst. H. Poincar Anal. Non Linaire 1(2), 109-145, and (4), 223-283 (1984) · Zbl 0541.49009
[32] Lions, P.-L.: The concentration-compactness principle in the calculus of variations. The limit case. Rev. Mat. Iberoamericana 1(1), 145-201, and (2), 45-121 (1985) · Zbl 0704.49005
[33] Maz’ya, V., Shaposhnikova, T.: On pointwise interpolation inequalities for derivatives. Math. Bohem. 124, 131-148 (1999) · Zbl 0936.26008
[34] Moroz, V., Van Schaftingen, J.: Groundstates of nonlinear Choquard equations: existence, qualitative properties and decay asymptotics. J. Funct. Anal. 265, 153-184 (2013) · Zbl 1285.35048
[35] Nahas, J., Ponce, G.: On the persistent properties of solutions to semi-linear Schrödinger equation. Comm. PDE 34, 1-20 (2009) · Zbl 1228.35229
[36] Palatucci, G., Pisante, A.: Improved Sobolev embeddings, profile decomposition, and concentration-compactness for fractional Sobolev spaces. Calc. Var. PDE. doi:10.1007/s00526-013-0656-y · Zbl 1296.35064
[37] Pausader, B., Shao, S.: The mass-critical fourth-order Schrödinger equation in high dimensions. J. Hyp. Differ. Equ. 7, 651-705 (2010) · Zbl 1232.35156 · doi:10.1142/S0219891610002256
[38] Quilodran, R.: On extremizing sequences for the adjoint restriction inequality on the cone arXiv: 1108.6081 · Zbl 1270.42029
[39] Ruiz, D.: On the Schrödinger-Poisson-Slater system: behavior of minimizers, radial and nonradial cases. Arch. Rational Mech. Anal. 198(1), 349-368 (2010) · Zbl 1235.35232
[40] Strauss, W.A.: Existence of solitary waves in higher dimensions. Comm. Math. Phys. 55(2), 149-162 (1977) · Zbl 0356.35028 · doi:10.1007/BF01626517
[41] Talenti, G.: Best constant in Sobolev inequality. Ann. Mat. Pura Appl. 4, 353-372 (1976) · Zbl 0353.46018
[42] Taylor, M.E.: Tools for PDE, Mathematical Surveys and Monographs, vol. 81. American Mathematical Society, Providence, RI (2000) · Zbl 0963.35211
[43] Weinstein, M.I.: Nonlinear Schrödinger equations and sharp interpolation estimates. Comm. Math. Phys. 87(4), 567-576 (1983) · Zbl 0527.35023 · doi:10.1007/BF01208265
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.