×

Existence and multiplicity of nontrivial solutions for \(p\)-Laplacian Schrödinger-Kirchhoff-type equations. (English) Zbl 1318.35021

Summary: In this paper, we are concerned with the following Schrödinger-Kirchhoff-type problem: \[ \begin{cases} -(a+b\int_{\mathbb R^N}|\nabla u|^pdx)^{p-1}\Delta_pu+\lambda V(x)|u|^{p-2}u=f(x,u),\quad x\in\mathbb R^N, \\ u \in W^{1,p}(\mathbb R^N),\end{cases}\tag{P} \] where \(a>0\), \(b\geq 0\) are constants, \(\Delta_pu:=\mathrm{div}(|\nabla u|^{p-2}\nabla u)\) is the \(p\)-Laplacian operator with \(p\geq 2\), \(V(x)\) is the potential function satisfying some conditions which may not guarantee the compactness of the corresponding Sobolev embedding. By using the variational methods, we prove the existence and multiplicity of nontrivial solutions for problem (P).

MSC:

35J35 Variational methods for higher-order elliptic equations
Full Text: DOI

References:

[1] Alves, C. O.; Corrêa, F. J.S. A.; Ma, T. F., Positive solutions for a quasilinear elliptic equation of Kirchhoff type, Comput. Math. Appl., 49, 85-93 (2005) · Zbl 1130.35045
[2] Arosio, A.; Panizzi, S., On the well-posedness of the Kirchhoff string, Trans. Amer. Math. Soc., 348, 1, 305-330 (1996) · Zbl 0858.35083
[3] Bensedik, A.; Bouchekif, M., On an elliptic equation of Kirchhoff-type with a potential asymptotically linear at infinity, Math. Comput. Modelling, 49, 1089-1096 (2009) · Zbl 1165.35364
[4] Bernstein, S., Sur une classe d’équations fonctionnelles aux déivés partielles, Bull. Acad. Sci. URSS. Sér. Math., 4, 17-26 (1940) · Zbl 0026.01901
[5] Cammaroto, F.; Vilasi, L., On a Schrödinger-Kirchhoff-type equation involving the \(p(x)\)-Laplacian, Nonlinear Anal., 81, 42-53 (2013) · Zbl 1263.35077
[6] Cavalcanti, M. M.; Domingos Cavalcanti, V. N.; Soriano, J. A., Global existence and uniform decay rates for the Kirchhoff-Carrier equation with nonlinear dissipation, Adv. Differential Equations, 6, 6, 701-730 (2001) · Zbl 1007.35049
[7] Cheng, B.; Wu, X., Existence results of positive solutions of Kirchhoff type problems, Nonlinear Anal., 71, 4883-4892 (2009) · Zbl 1175.35038
[8] Cheng, B.; Wu, X.; Liu, J., Multiple solutions for a class of Kirchhoff-type problems with concave nonlinearity, NoDEA Nonlinear Differential Equations Appl., 19, 521-537 (2012) · Zbl 1262.35106
[9] Chipot, M.; Lovat, B., Some remarks on nonlocal elliptic and parabolic problems, Nonlinear Anal., 30, 7, 4619-4627 (1997) · Zbl 0894.35119
[10] Colasuonno, F.; Pucci, P., Multiplicity of solutions for \(p(x)\)-polyharmonic elliptic Kirchhoff equations, Nonlinear Anal., 74, 5962-5974 (2011) · Zbl 1232.35052
[11] D’Ancona, P.; Spagnolo, S., Global solvability for the degenerate Kirchhoff equation with real analytic data, Invent. Math., 108, 2, 247-262 (1992) · Zbl 0785.35067
[12] Ding, Y. H.; Szulkin, A., Bound states for semilinear Schrödinger equations with sign-changing potential, Calc. Var. Partial Differential Equations, 29, 397-419 (2007) · Zbl 1119.35082
[13] He, X.; Zou, W., Infinitely many positive solutions for Kirchhoff-type problems, Nonlinear Anal., 70, 1407-1414 (2009) · Zbl 1157.35382
[14] He, X.; Zou, W., Multiplicity of solutions for a class of Kirchhoff type problems, Acta Math. Appl. Sin. Engl. Ser., 26, 387-394 (2010) · Zbl 1196.35077
[15] He, X.; Zou, W., Existence and concentration behavior of positive solutions for a Kirchhoff equation in \(R^3\), J. Differential Equations, 252, 1813-1834 (2012) · Zbl 1235.35093
[16] He, X.; Zou, W., Ground states for nonlinear Kirchhoff equations with critical growth, Ann. Mat. Pura Appl. (4), 193, 473-500 (2014) · Zbl 1300.35016
[17] Jin, J. H.; Wu, X., Infinitely many radial solutions for Kirchhoff-type problems in \(R^N\), J. Math. Anal. Appl., 369, 564-574 (2010) · Zbl 1196.35221
[18] Kirchhoff, G., Mechanik (1883), Teubner: Teubner Leipzig · JFM 08.0542.01
[19] Lions, J. L., On some questions in boundary value problems of mathematical physics, (Contemporary Developments in Continuum Mechanics and Partial Differential Equations, Proc. Internat. Sympos.. Contemporary Developments in Continuum Mechanics and Partial Differential Equations, Proc. Internat. Sympos., Inst. Mat., Univ. Fed. Rio de Janeiro, Rio de Janeiro, 1977. Contemporary Developments in Continuum Mechanics and Partial Differential Equations, Proc. Internat. Sympos.. Contemporary Developments in Continuum Mechanics and Partial Differential Equations, Proc. Internat. Sympos., Inst. Mat., Univ. Fed. Rio de Janeiro, Rio de Janeiro, 1977, North-Holland Math. Stud., vol. 30 (1978), North-Holland: North-Holland Amsterdam, New York), 284-346 · Zbl 0404.35002
[20] Ma, T. F.; Muñoz Rivera, J. E., Positive solutions for a nonlinear nonlocal elliptic transmission problem, Appl. Math. Lett., 16, 243-248 (2003) · Zbl 1135.35330
[21] Mao, A.; Zhang, Z., Sign-changing and multiple solutions of Kirchhoff type problems without the P. S. condition, Nonlinear Anal., 70, 1275-1287 (2009) · Zbl 1160.35421
[22] Nie, J. J., Existence and multiplicity of nontrivial solutions for a class of Schrödinger-Kirchhoff-type equations, J. Math. Anal. Appl., 417, 65-79 (2014) · Zbl 1312.35102
[23] Nie, J. J.; Wu, X., Existence and multiplicity of non-trivial solutions for Schrödinger-Kirchhoff-type equations with radial potential, Nonlinear Anal., 75, 3470-3479 (2012) · Zbl 1239.35131
[24] Perera, K.; Zhang, Z., Nontrival solutions of Kirchhoff-type problems via the Yang index, J. Differential Equations, 221, 246-255 (2006) · Zbl 1357.35131
[25] Pohozăev, S. I., A certain class of quasilinear hyperbolic equations, Mat. Sb. (N.S.), 96, 138, 152-166 (1975), 168 (in Russian)
[26] Rabinowitz, P. H., Minimax Methods in Critical Point Theory with Application to Differential Equations, CBMS Reg. Conf. Ser. Math., vol. 65 (1986), American Mathematical Society: American Mathematical Society Providence, RI · Zbl 0609.58002
[27] Su, J. B.; Wang, Z. Q.; Willem, M., Nonlinear Schrödinger equations with unbounded and decaying radial potentials, Commun. Contemp. Math., 9, 571-583 (2007) · Zbl 1141.35056
[28] Wu, X., Existence of nontrivial solutions and high energy solutions for Schrödinger-Kirchhoff-type equations in \(R^N\), Nonlinear Anal. Real World Appl., 12, 1278-1287 (2011) · Zbl 1208.35034
[29] Yang, Y.; Zhang, J., Nontrivial solutions of a class of nonlocal problems via local linking theory, Appl. Math. Lett., 23, 377-380 (2010) · Zbl 1188.35084
[30] Zhang, Z.; Perera, K., Sign changing solutions of Kirchhoff type problems via invariant sets of descent flow, J. Math. Anal. Appl., 317, 456-463 (2006) · Zbl 1100.35008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.