×

Universality conjecture and results for a model of several coupled positive-definite matrices. (English) Zbl 1318.15018

This clearly structured article splits into several parts. Section 1 is introductory, all main results are stated in Section 2. First, the authors introduce a Cauchy chain matrix model that generalises the Cauchy two-matrix model from the paper by M. Bertola et al. [ibid. 287, No. 3, 983–1014 (2009; Zbl 1197.82037)] to the case of an arbitrary number of \(p\) positive definite \(n\times n\) Hermitian matrices \(M_1,M_2,\dots,M_p\). Their joint probability distribution function depends on the choice of \(p\) scalar functions, called the potentials. After discussing some general properties of such a model the relevant biorthogonal polynomials are expressed in terms of a Riemann-Hilbert problem. The solutions of this problem then give an expression of all kernels of the correlation functions. Next, for some choice of potentials and \(p=3\), the correlation function is studied in the scaling limit near the origin; the cases \(p=4,5,6\) are also addressed in some detail. The Meijer \(G\)-functions are used to express the limiting scaling fields. Several conjectures are stated for arbitrary \(p\).
In Section 3, two main theorems are proved, whereas the final Section 4 contains a wealth of technical results, like the detailed asymptotical analysis of a Cauchy-Laguerre three matrix chain; these results are needed to accomplish the proofs of the remaining theorems.

MSC:

15B48 Positive matrices and their generalizations; cones of matrices
82B20 Lattice systems (Ising, dimer, Potts, etc.) and systems on graphs arising in equilibrium statistical mechanics
33C60 Hypergeometric integrals and functions defined by them (\(E\), \(G\), \(H\) and \(I\) functions)
62H20 Measures of association (correlation, canonical correlation, etc.)

Citations:

Zbl 1197.82037

Software:

DLMF

References:

[1] Akemann G., Burda Z.: Universal microscopic correlation functions for products of independent Ginibre matrices. J. Phys. A: Math. Theor. 45, 465201 (2012) · Zbl 1261.15041 · doi:10.1088/1751-8113/45/46/465201
[2] Akemann, G., Burda, Z., Kieburg, M.: Universal distribution of Lyapunov exponents for products of Ginibre matrices. J. Phys. A.Math. Theor. 47, 395202 (2014a) · Zbl 1327.60021
[3] Akemann, G., Burda, Z., Kieburg, M., Nagao, T.: Universal microscopic correlation functions for products of truncated unitary matrices. J. Phys. A 47, 255202 (2014b) · Zbl 1296.15016
[4] Akemann G., Ipsen J., Kieburg M.: Products of rectangular random matrices: singular values and progressive scattering. Phys. Rev. E 88, 052118 (2013) · doi:10.1103/PhysRevE.88.052118
[5] Akemann G., Kieburg M., Wei L.: Singular value correlation functions for products of Wishart random matrices. J. Phys. A Math. Theor. 46, 275205 (2013) · Zbl 1271.15022 · doi:10.1088/1751-8113/46/27/275205
[6] Balogh F., Bertola M.: Regularity of a vector potential problem and its spectral curve. J. Approx. Theory 161, 353-370 (2009) · Zbl 1190.42009 · doi:10.1016/j.jat.2008.10.010
[7] Barnes E.: The asymptotic expansion of integral functions defined by generalized hypergeometric series. Proc. London. Math. Soc 2(5), 59-116 (1907) · JFM 38.0449.01 · doi:10.1112/plms/s2-5.1.59
[8] Bertola M., Gekhtman M., Szmigielski J.: The Cauchy two-matrix model. Commun. Math. Phys. 287(3), 983-1014 (2009) · Zbl 1197.82037 · doi:10.1007/s00220-009-0739-y
[9] Bertola, M., Gekhtman, M., Szmigielski, J.: Strong asymptotics for Cauchy biorthogonal polynomials with application to the Cauchy two-matrix model. J. Math. Phys. 54(4), 043517, 25 pp (2013) · Zbl 1292.33009
[10] Bertola, M., Gekhtman, M., Szmigielski, J.: Cauchy-Laguerre two-matrix model and the Meijer-G random point field. Commun. Math. Phys. doi:10.1007/s00220-013-1833-8 · Zbl 1303.82018
[11] Beals, R., Szmigielski, J.: Meijer G-functions: a gentle introduction. Notices of the AMS, volume 60, number 7, (2013) · Zbl 1322.33001
[12] Burda Z., Jarosz A., Livan G., Nowak M.A., Swiech A.: Eigenvalues and singular values of products of rectangular Gaussian random matrices. Phys. Rev. E 82, 061114 (2010) · Zbl 1371.60014 · doi:10.1103/PhysRevE.82.061114
[13] Deift, P.: Orthogonal polynomials and random matrices: a Riemann-Hilbert approach. Courant Lecture Notes in Mathematics, vol. 3. New York University, Courant Institute of Mathematical Sciences, New York/American Mathematical Society, Providence, RI (1999) · Zbl 0997.47033
[14] Deift P., Kriecherbauer T., McLaughlin K.T.-R.: New results on equlibirum measure for logarithmic potentials in the presence of an external field. J. Approx. Theory 95, 388-475 (1998) · Zbl 0918.31001 · doi:10.1006/jath.1997.3229
[15] Deift P., Kriecherbauer T., McLaughlin K.T.-R., Venakides S., Zhou X.: Uniform asymptotics for polynomials orthogonal with respect to varying exponential weights and applications to universality questions in random matrix theory. Commun. Pure Appl. Math. 52, 1335-1425 (1999) · Zbl 0944.42013 · doi:10.1002/(SICI)1097-0312(199911)52:11<1335::AID-CPA1>3.0.CO;2-1
[16] Deift P., Zhou X.: A steepest descent method for oscillatory Riemann-Hilbert problems. Asymptotics for the MKdV equation. Ann. Math. 137, 295-368 (1993) · Zbl 0771.35042 · doi:10.2307/2946540
[17] Duits M., Kuijlaars A.B.J., Mo M.Y.: The Hermitian two matrix model with an even quartic potential. Mem. Amer. Math. Soc. 217(1022), v+105 (2012) · Zbl 1247.15032
[18] Duits M., Kuijlaars A.B.J.: Universality in the two-matrix model: a Riemann-Hilbert steepest-descent analysis. Commun. Pure Appl. Math. 62(8), 1076-1153 (2009) · Zbl 1221.15052 · doi:10.1002/cpa.20269
[19] Eynard B., Mehta M.: Matrices coupled in a chain. I. Eigenvalue correlations. J. Phys. A 31(19), 4457-4464 (1998) · Zbl 0938.15012 · doi:10.1088/0305-4470/31/19/010
[20] Fields J.L.: The asymptotic expansion of the Meijer G-Function. Math. Comp. 26, 757-765 (1972) · Zbl 0268.33008
[21] Gakhov, F.: Boundary value problems. Translated from the Russian. Reprint of the 1966 translation. Dover Publications, Inc., New York (1990) · Zbl 0830.30026
[22] Girotti M.: Gap probabilities for the Generalized Bessel process: a Riemann-Hilbert approach. Math. Phys. Anal. Geom. 17, 183-211 (2014) · Zbl 1308.60062
[23] Ince E.: Ordinary Differential Equations. Dover Publications, New York (1944) · Zbl 0063.02971
[24] Jimbo M., Miwa T.: Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. II. Physica D 2, 407-448 (1981) · Zbl 1194.34166 · doi:10.1016/0167-2789(81)90021-X
[25] Karlin, S.: Total positivity. Vol I. Stanford University Press, Stanford, Calif (1968) xii+576 pp · Zbl 0219.47030
[26] Kuijlaars A., Van Assche W., Wielonsky F.: Quadratic Hermite-Padé Approximation to the Exponential Function: a Riemann-Hilbert Approach. Construct. Approx. 21, 351-412 (2005) · Zbl 1084.41007 · doi:10.1007/s00365-004-0579-0
[27] Kuijlaars A.: Universality, Chapter 6 in The Oxford Handbook of Random Matrix Theory. Oxford University Press, Oxford (2011)
[28] Kuijlaars A., Zhang L.: Singular values of products of Ginibre random matrices, multiple orthogonal polynomials and hard edge scaling limits. Commun. Math. Phys. 332, 759-781 (2014) · Zbl 1303.15046 · doi:10.1007/s00220-014-2064-3
[29] Mahoux G., Mehta M., Normand J.-M.: Matrices coupled in a chain. II. Spacing functions. J. Phys. A. 31(19), 4457-4464 (1998) · Zbl 0938.15013 · doi:10.1088/0305-4470/31/19/011
[30] Mehta, M.: Random Matrices, Third edition. Pure and Applied Mathematics (Amsterdam), 142. Elsevier/Academic Press, Amsterdam (2004) · Zbl 1107.15019
[31] NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/ · Zbl 1019.65001
[32] Tracy C., Widom H.: Level-spacing distributions and the Airy kernel. Commun. Math. Phys. 159(1), 151-174 (1994) · Zbl 0789.35152 · doi:10.1007/BF02100489
[33] Tracy C., Widom H.: Level-spacing distributions and the Bessel kernel. Commun. Math. Phys. 161(2), 289-309 (1994) · Zbl 0808.35145 · doi:10.1007/BF02099779
[34] Zhang L.: A note on the limiting mean distribution of singular values for products of two Wishart random matrices. J. Math. Phys. 54, 083303 (2013) · Zbl 1305.15080 · doi:10.1063/1.4818978
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.