×

Multiple orthogonal polynomials associated with an exponential cubic weight. (English) Zbl 1309.42037

The authors introduce two families of multiple orthogonal polynomials associated with an exponential cubic weight over contours in the complex plane. As main results, the Rodrigues formula and nearest-neighbour recurrence relations are found. The coefficients of the latter are connected with two sequences \(a_n\) and \(b_n\), which are related to the coefficients of the non-multiple orthogonal polynomials with the same weight and contours (presented also in this article). The asymptotic behaviour of these sequences \(a_n\) and \(b_n\) is also studied.
In the diagonal case (both indices of the multiple orthogonal polynomial with equal values) the zeros of these functions are placed over the contour of orthogonality. The authors describe the asymptotic distribution of the zeros in this case, as well as the asymptotic behaviour of the ratio of two consecutive diagonal polynomials as the degree tends to infinity.

MSC:

42C05 Orthogonal functions and polynomials, general theory of nontrigonometric harmonic analysis

References:

[1] Aptekarev, A. I., Multiple orthogonal polynomials, J. Comput. Appl. Math., 99, 423-447 (1998) · Zbl 0958.42015
[2] Aptekarev, A. I.; Branquinho, A.; Van Assche, W., Multiple orthogonal polynomials for classical weights, Trans. Amer. Math. Soc., 355, 3887-3914 (2003) · Zbl 1033.33002
[3] Ben Cheikh, Y.; Ben Romdhane, N., On \(d\)-symmetric classical \(d\)-orthogonal polynomials, J. Comput. Appl. Math., 236, 85-93 (2011) · Zbl 1261.42040
[4] Bleher, P.; Deaño, A., Topological expansion in the cubic random matrix model, Int. Math. Res. Not., 12, 2699-2755 (2013) · Zbl 1314.60022
[5] Chen, Y.; Ismail, M., Jacobi polynomials from compatibility conditions, Proc. Amer. Math. Soc., 133, 465-472 (2005) · Zbl 1057.33004
[6] Clarkson, P. A., Painlevé equations — Nonlinear special functions, (Marcellán, F.; Van Assche, W., Orthogonal Polynomials and Special Functions: Computation and Applications. Orthogonal Polynomials and Special Functions: Computation and Applications, Lecture Notes in Mathematics, vol. 1883 (2006), Springer-Verlag: Springer-Verlag Berlin), 331-411 · Zbl 1100.33006
[7] Clarkson, P.; Mansfield, E. L.; Webster, H. N., On the relation between discrete and continuous Painlevé equations, Theoret. and Math. Phys., 122, 1, 1-16 (2000) · Zbl 0994.34077
[8] Deaño, A.; Huybrechs, D.; Kuijlaars, A. B.J., Asymptotic zero distribution of complex orthogonal polynomials associated with Gaussian quadrature, J. Approx. Theory, 162, 2202-2224 (2010) · Zbl 1223.41017
[9] Dominici, D., Asymptotic analysis of generalized Hermite polynomials, Analysis, 28, 239-261 (2008) · Zbl 1165.33008
[10] Filipuk, G.; Van Assche, W.; Zhang, L., Ladder operators and differential equations for multiple orthogonal polynomials, J. Phys. A: Math. Theor., 46, 205204 (2013), 24 pp · Zbl 1271.33004
[11] Fokas, A. S.; Grammaticos, B.; Ramani, A., From continuous to discrete Painlevé equations, J. Math. Anal. Appl., 180, 2, 342-360 (1993) · Zbl 0794.34013
[12] Freud, G., On the coefficients in the recursion formulae of orthogonal polynomials, Proc. Royal Irish Acad. Sect. A, 76, 1-6 (1976) · Zbl 0327.33008
[13] Geronimo, J. S.; Hill, T. P., Necessary and sufficient condition that the limit of Stieltjes transforms is a Stieltjes transform, J. Approx. Theory, 121, 1, 54-60 (2003) · Zbl 1030.44003
[14] Gonchar, A. A.; Rakhmanov, E. A., Equilibrium distributions and the rate of rational approximation of analytic functions, Mat. Sb. (N.S.). Mat. Sb. (N.S.), translation in Math. USSR-Sb., 62, 2, 305-348 (1989), 306-352, 447 · Zbl 0663.30039
[15] Gould, H. W.; Hopper, A. T., Operational formulas connected with two generalizations of Hermite polynomials, Duke Math. J., 29, 51-63 (1962) · Zbl 0108.06504
[16] Grammaticos, B.; Ramani, A., The hunting for the discrete Painlevé equations, Regul. Chaotic Dyn., 5, 53-66 (2000) · Zbl 0951.39005
[17] Grammaticos, B.; Ramani, A., Discrete Painlevé equations: a review, Lecture Notes in Phys., 644, 245-321 (2004) · Zbl 1064.39019
[18] Ismail, M. E.H., Classical and quantum orthogonal polynomials in one variable, (Encyclopedia of Mathematics and its Applications, vol. 98 (2005), Cambridge University Press) · Zbl 1082.42016
[19] Magnus, A. P., Painlevé type differential equations for the recurrence coefficients of semi-classical orthogonal polynomials, J. Comput. Appl. Math., 57, 215-237 (1995) · Zbl 0828.42012
[20] Nijhoff, F.; Satsuma, J.; Kajiwara, K.; Grammaticos, B.; Ramani, A., A study of the alternate discrete Painlevé II equation, Inverse Problems, 12, 697-716 (1996) · Zbl 0860.35124
[21] Nikishin, E. M.; Sorokin, V. N., Rational approximations and orthogonality, (Translations of Mathematical Monographs, vol. 92 (1991), Amer. Math. Soc: Amer. Math. Soc Providence RI) · Zbl 0733.41001
[22] Paris, R. B., The asymptotics of the generalised Hermite-Bell polynomials, J. Comput. Appl. Math., 232, 216-226 (2009) · Zbl 1176.33014
[23] Pólya, G., Über die Nullstellen sukzessiver Derivierten, Math. Z., 12, 1, 36-60 (1922) · JFM 48.0370.02
[24] Pólya, G.; Szegő, G., Problems and Theorems in Analysis II (1976), Springer-Verlag: Springer-Verlag Berlin, revised and enlarged translation of Ausgaben und Lehrsätze aus der Analysis II, 4th edition, 1971 · Zbl 0311.00002
[25] Stahl, H., Orthogonal polynomials with complex-valued weight function. I, II, Constr. Approx., 2 (1986), 225-240, 241-251 · Zbl 0592.42016
[26] Van Assche, W., Discrete Painlevé equations for recurrence coefficients of orthogonal polynomials, (Elaydi, S.; etal., Difference Equations, Special Functions and Orthogonal Polynomials” (2007), World Scientific), 687-725 · Zbl 1128.39013
[27] Van Assche, W., Nearest neighbor recurrence relations for multiple orthogonal polynomials, J. Approx. Theory, 163, 1427-1448 (2011) · Zbl 1231.33014
[28] Van Assche, W.; Coussement, E., Some classical multiple orthogonal polynomials, Numerical analysis 2000, Vol. V, Quadrature and orthogonal polynomials, J. Comput. Appl. Math., 127, 317-347 (2001) · Zbl 0969.33005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.