×

Hohenberg-Kohn theorem for Coulomb type systems and its generalization. (English) Zbl 1308.81197

Summary: Density functional theory (DFT) has become a basic tool for the study of electronic structure of matter, in which the Hohenberg-Kohn theorem plays a fundamental role in the development of DFT. In this paper, we present a simple, selfcontained and mathematically rigorous proof using the Fundamental Theorem of Algebra. We also show the Hohenberg-Kohn theorem for systems with some more general external potentials.

MSC:

81V70 Many-body theory; quantum Hall effect
49S05 Variational principles of physics
81V55 Molecular physics
82D20 Statistical mechanics of solids

References:

[1] Ayers P.W.: Density per particle as a descriptor of Coulombic systems. Proc. Nat. Acad. Sci. USA 97, 1959–1964 (2000) · doi:10.1073/pnas.040539297
[2] Ayers P.W., Golden S., Levy M.: Generalizations of the Hohenberg-Kohn theorem: I. Legendre transform constructions of variational principles for density matrices and electron distrbution functions. J. Chem. Phys. 124, 054101–054107 (2006) · doi:10.1063/1.2006087
[3] Ayers P.W., Levy M.: Time-independent (static) density-functional theories for pure excited states: extensions and unification. Phys. Rev. A 80, 012508–012523 (2009) · doi:10.1103/PhysRevA.80.012508
[4] Ayers P.W., Liu S.: Necessary and sufficient conditions for the N-representability of density functionals. Phys. Rev. A 75, 022514–022527 (2007) · doi:10.1103/PhysRevA.75.022514
[5] Cohen A.j., Mori-Sánchez P., Yang W.: Challenges for density functional theory. Chem. Rev. 112, 289–320 (2012) · doi:10.1021/cr200107z
[6] Eschrig H.: The Fundamentals of Density Functional Theory. Eagle, Leipzig (2003) · Zbl 1070.81001
[7] Fournais S., Hoffmann-Ostenhof M., Hoffmann-Ostenhof T., Østergard Sørensen T.: Analyticity of the density of electronic wavefunctions. Ark. Mat. 42, 143–415 (2004) · Zbl 1068.35118
[8] Fournais S., Hoffmann-Ostenhof M., Hoffmann-Ostenhof T., Østergard Sørensen T.: Analytic structure of many-body Coulombic many-electron wave functions. Commun. Math. Phys. 289, 291–310 (2009) · Zbl 1171.35110 · doi:10.1007/s00220-008-0664-5
[9] Gross, E.K.U., Dreizler, R.M. (eds.), Density Functional Theory. Plenum Press, New York (1995)
[10] Hadjisavvas N., Theophilou A.: Rigorous formulation of the Kohn-Sham theory. Phy. Rev. A 30, 2183–2186 (1984) · doi:10.1103/PhysRevA.30.2183
[11] Hohenberg P., Kohn W.: Inhomogeneous gas. Phys. Rev. 136, B864–B871 (1964) · doi:10.1103/PhysRev.136.B864
[12] Jensen F.: Introduction to Computational Chemistry. Wiley, New York (1999)
[13] Kato T.: On the eigenfunctions of many-particle systems in quantum mechanics. Commun. Pure Appl. Math. 10, 151–177 (1957) · Zbl 0077.20904 · doi:10.1002/cpa.3160100201
[14] Kohn W., Sham L.J.: Self-consistent equations including exchange and correlation effects. Phys. Rev. A 140, 4743–4754 (1965)
[15] Kryachko E.S.: On the original proof by reductio ad absurdum of the Hohenberg-Kohn theorem for many-electron Coulomb systems. Int. J. Quantum Chem. 103, 818–823 (2005) · doi:10.1002/qua.20539
[16] Kryachko E.S.: On the proof by reductio ad absurdum of the Hohenberg-Kohn theorem for ensembles of fractionally occupied states of Coulomb systems. Int. J. Quantum Chem. 106, 1795–1798 (2006) · doi:10.1002/qua.20970
[17] Lammert P.E.: Differentiability of Lieb functional in electronic density functional theory. Int. J. Quantum Chem. 107, 1943–1953 (2007) · doi:10.1002/qua.21342
[18] Lammert P.E.: Well-behaved coarse-grained model of density theory. Phys. Rev. A 82, 012109–012230 (2010) · doi:10.1103/PhysRevA.82.012109
[19] Levy M.: University variational functionals of electron densities, first-order density matrices, and natural spin-orbitals and solutions of thev-representability problems. Proc. Nat. Acad. Sci. USA 76, 6062–6065 (1979) · doi:10.1073/pnas.76.12.6062
[20] Levy M.: Electron densities in search of Hamiltonians. Phys. Rev. A 26, 1200–1208 (1982) · doi:10.1103/PhysRevA.26.1200
[21] Levy M.: On the simple constrained-search reformulation of the Hohenberg-Kohn theorem to include degeneracies and more (1964–1979). Int. J. Quantum Chem. 110, 3140–3144 (2010) · doi:10.1002/qua.22895
[22] Lieb E.H.: Density functionals for Coulomb systems. Int. J. Quantum Chem. 24, 243–277 (1983) · doi:10.1002/qua.560240302
[23] Martin R.: Electronic Structure: basic theory and practical methods. Cambridge University Press, London (2004) · Zbl 1152.74303
[24] Mezey P.G.: The holographic electron density theorem and quantum similarity measures. Mol. Phys. 96, 169–178 (1999) · doi:10.1080/00268979909482950
[25] Parr R.G., Yang W.T.: Density-Functional theory of atoms and molecules. Oxford University Press, Oxford (1989)
[26] Pino R., Bokanowski O., Ludeña E.V., Boada R.L.: A re-statement of the Hohenberg-Kohn theorem and its extension to finite subspaces. Theor. Chem. Account 118, 557–561 (2007) · doi:10.1007/s00214-007-0367-6
[27] Smithies F.: A forgotten paper on the fundamental theorem of algebra. Notes Rec. R. Soc. Lond. 54, 333–341 (2000) · Zbl 0969.01013 · doi:10.1098/rsnr.2000.0116
[28] Szczepanik W., Dulak M., Wesolowski T.A.: Comment on ”On the original proof by reductio ad absurdum of the Hohenberg-Kohn theorem for many-electron Coulomb systems”. Int. J. Quantum Chem. 107, 762–763 (2007) · doi:10.1002/qua.21102
[29] Leeuwen R.: Density functional approach to the many-body problem: key concepts and exact functionals. Adv. Quantum Chem. 43, 25–94 (2003) · doi:10.1016/S0065-3276(03)43002-5
[30] Yang W.T., Ayers P.W., Wu Q.: Potential functionals: dual to density functionals and solution to the v-representability problem. Phys. Rev. Lett. 92, 146404–146407 (2004) · doi:10.1103/PhysRevLett.92.146404
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.