×

The Aharonov-Bohm effect in scattering of nonrelativistic electrons by a penetrable magnetic vortex. (English) Zbl 1305.81131

Summary: Quantum-mechanical theory for scattering of nonrelativistic charged particles with spin by a penetrable magnetic vortex is elaborated. The scattering differential cross section is shown to consist of two terms, one describing diffraction on the vortex in the forward direction and another one describing penetration through the vortex. The Aharonov-Bohm effect is manifested as a fringe shift in the diffraction pattern. The penetration effect is analyzed for the case of the uniform distribution of the magnetic field strength inside the vortex. We find that the penetrability of the magnetic vortex does not affect the diffraction pattern, and, hence, the Aharonov-Bohm effect is the same for a penetrable vortex as for an impenetrable one.

MSC:

81U05 \(2\)-body potential quantum scattering theory
81Q05 Closed and approximate solutions to the Schrödinger, Dirac, Klein-Gordon and other equations of quantum mechanics
81Q70 Differential geometric methods, including holonomy, Berry and Hannay phases, Aharonov-Bohm effect, etc. in quantum theory

References:

[1] Aharonov, Y., Bohm, D.: Significance of electromagnetic potentials in the quantum theory. Phys. Rev. 115, 485–491 (1959) · Zbl 0099.43102 · doi:10.1103/PhysRev.115.485
[2] Peshkin, M., Tonomura, A.: The Aharonov-Bohm Effect, Springer Lecture Notes in Physics 430. Springer, Berlin (1989)
[3] Tonomura, A.: The AB effect and its expanding applications. J. Phys. A: Math. Theor. 43, 354021 (2010) · doi:10.1088/1751-8113/43/35/354021
[4] Aharonov, Y., Bohm, D.: Further considerations on electromagnetic potentials in the quantum theory. Phys. Rev. 123, 1511–1524 (1961) · Zbl 0104.22205 · doi:10.1103/PhysRev.123.1511
[5] Berry, M.V.: Exact Aharonov-Bohm wave function obtained by applying Dirac’s magnetic phase factor. Eur. J. Phys. 1, 240 (1980) · doi:10.1088/0143-0807/1/4/011
[6] Ruijsenaars, S.N.M.: The Aharonov-Bohm effect and scattering theory. Ann. Phys. (NY) 146, 1–34 (1983) · Zbl 0554.47003 · doi:10.1016/0003-4916(83)90051-9
[7] Aharonov, Y., Au, C.K., Lerner, E.C., Liang, J.Q.: Aharonov-Bohm effect as a scattering event. Phys. Rev. D 29, 2396–2398 (1984) · doi:10.1103/PhysRevD.29.2396
[8] Jackiw, R.: Dynamical symmetry of the magnetic vortex. Ann. Phys. (NY) 201, 83–116 (1990) · doi:10.1016/0003-4916(90)90354-Q
[9] Sitenko, Yu.A., Vlasii, N.D.: Diffraction and quasiclassical limit of the Aharonov-Bohm effect. Europhys. Lett. 92, 60001 (2010) · Zbl 1196.81225
[10] Sitenko, Yu.A., Vlasii, N.D.: Scattering theory and the Aharonov-Bohm effect in quasiclassical physics. Ann. Phys. (NY) 326, 1441–1557 (2011) · Zbl 1219.81234
[11] Sitenko, Yu.A., Vlasii, N.D.: Optical theorem for Aharonov-Bohm scattering. J. Phys. A: Math. Theor. 44, 315301 (2011) · Zbl 1225.81144
[12] Sitenko, Yu.A., Vlasii, N.D.: The Aharonov-Bohm effect in scattering of short-wavelength particles. J. Phys. A: Math. Theor. 45, 135305 (2012) · Zbl 1245.81028
[13] Sitenko, Yu.A., Vlasii, N.D.: The Aharonov-Bohm effect in scattering theory. Ann. Phys. (NY) 339, 542–559 (2013) · Zbl 1245.81028
[14] Perenboom, J.A.A.J., et al.: Developments at the high field magnet laboratory at Nijmegen. J. Low Temp. Phys. 170, 520–530 (2013) · doi:10.1007/s10909-012-0713-5
[15] Newton, R.G.: Scattering Theory of Waves and Particles. Springer, Berlin (1982) · Zbl 0496.47011
[16] Abramowitz, M., Stegun, I.A. (eds.): Handbook of Mathematical Functions. Dover, New York (1972) · Zbl 0543.33001
[17] Born, M., Wolf, E.: Principles of Optics. Pergamon Press, Oxford (1980)
[18] Chambers, R.G.: Shift of an electron interference pattern by enclosed magnetic flux. Phys. Rev. Lett. 5, 3–5 (1960) · doi:10.1103/PhysRevLett.5.3
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.