×

The output feedback control for uncertain nonholonomic systems. (English) Zbl 1303.93089

Summary: This paper considers the problems of almost asymptotic stabilization and global asymptotic regulation (GAR) by output feedback for a class of uncertain nonholonomic systems. By combining the nonsmooth change of coordinates and output feedback domination design together, we construct a simple linear time-varying output feedback controller, which can universally stabilize a whole family of uncertain nonholonomic systems. The simulation demonstrates the effectiveness of the proposed controller.

MSC:

93B52 Feedback control
37J60 Nonholonomic dynamical systems
93C15 Control/observation systems governed by ordinary differential equations
Full Text: DOI

References:

[1] C. Canudas de Wit, O. J. Sordalen. Exponential stabilization of mobile robots with nonholonomic constraints[J]. IEEE Trans. on Automatic Control, 1992,37(11):1791–1797. · Zbl 0778.93077 · doi:10.1109/9.173153
[2] R. M. Murray, S. Sastry. Nonholonomic motion planning: Steering using sinusoids[J]. IEEE Trans. on Automatic Control, 1993,38(5):700–716. · Zbl 0800.93840 · doi:10.1109/9.277235
[3] C. Samson. Control of chained systems application to path following and time-varying point-stabilization of mobile robots[J]. IEEE Trans. on Automatic Control, 1995,40(1):64–77. · Zbl 0925.93631 · doi:10.1109/9.362899
[4] I. Kolmanovsky, N. H. McClamroch. Developments in nonholonomic control problems[J]. IEEE Control Systems, 1995,15(12):20–36. · doi:10.1109/37.476384
[5] A. Astolfi. Asymptotic stabilization of nonholonomic systems with siscontinuous control[D]. Eidgenössische Technische Ochschule, 1995.
[6] R. W. Brockett. Asymptotic stability and feedback stabilization[M]// R. W. Brockett, R. S. Millman, H. J. Sussmann, Eds. Differential Geometric Control Theory. Boston, MA: Birkäuser, 1983: 181–191. · Zbl 0528.93051
[7] M. A. Krasnosel’skii, P. P. Zabreiko. Geometrical Methods of Nonlinear Analysis[M]. Berlin, Germany: Springer-Verlag, 1983
[8] J. B. Pomet. Explicit design of time-varying stabilizing control laws for a class of controllable system without drift[J]. Systems & Control Letters, 1992, 18(3):147–158. · Zbl 0744.93084 · doi:10.1016/0167-6911(92)90019-O
[9] W. Lin. Time-varying feedback control of nonaffine nonlinear systems without drift[J]. Systems & Control Letters, 1996, 29(2): 101–110. · Zbl 0866.93082 · doi:10.1016/S0167-6911(96)00050-3
[10] R. T. M’Closkey, R. M. Murray. Exponential stabilization of driftless nonlinear control systems using homogeneous feedback[J]. IEEE Trans. on Automatic Control, 1997, 42(5): 614–628. · Zbl 0882.93066 · doi:10.1109/9.580865
[11] Z. Jiang. Iterative design of time-varying stabilizers for multi-input systems in chained form[J]. Systems & Control Letters, 1996,28(5):255–262. · Zbl 0866.93084 · doi:10.1016/0167-6911(96)00029-1
[12] A. Astolfi. Discontinuous control of nonholonomic systems[J]. Systems & Control Letters, 1996, 27(1):37–45. · Zbl 0877.93107 · doi:10.1016/0167-6911(95)00041-0
[13] A. M. Bloch, M. Reyhanoglu, N. H. McClamroch. Control and stabilization of nonholonomic dynamic systems[J]. IEEE Trans. on Automatic Control, 1992, 37(11):1746–1757. · Zbl 0778.93084 · doi:10.1109/9.173144
[14] A. M. Bloch, S. V. Drakunov. Stabilization of nonholonomic systems via sliding modes[C]// Proc. of 36th IEEE Conf. on Decision and Control, San Diego, CA, 1997:4260–4265.
[15] J. Luo, P. Tsiotras. Exponentially convergent control laws for nonholonomic chained systems in power form[J]. Systems & Control Letters, 1998, 35(2):87–95. · Zbl 0909.93029 · doi:10.1016/S0167-6911(98)00039-5
[16] J. Luo, P. Tsiotras. Control design for chained-form systems with bounded inputs[J]. Systems & Control Letters, 2000, 39(2):123–131. · Zbl 0948.93044 · doi:10.1016/S0167-6911(99)00097-3
[17] O.J. Sordalen, O. Egeland. Exponential stabilization of nonholonomic chained systems[J]. IEEE Trans. on Automatic Control, 1995, 40(1): 35–49. · Zbl 0828.93055 · doi:10.1109/9.362901
[18] C. Qian, W. Lin. Output feedback control of a class of nonlinear systems: A nonseparation principle paradigm[J]. IEEE Trans. on Automatic Control, 2002,47(10):1710–1715. · Zbl 1364.93720 · doi:10.1109/TAC.2002.803542
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.