×

Strang-type preconditioners for solving fractional diffusion equations by boundary value methods. (English) Zbl 1302.65212

Summary: The finite difference scheme with the shifted Grünwald formula is employed to semi-discrete the fractional diffusion equations. This spatial discretization can reduce to the large system of ordinary differential equations (ODEs) with initial values. Recently, the boundary value method was developed as a popular algorithm for solving the large systems of ODEs. This method requires the solutions of one or more nonsymmetric and large-scale linear systems.
In this paper, the generalized minimal residual (GMRES) method with the block circulant preconditioner is proposed to solve relevant linear systems. Some conclusions about the convergence analysis and spectrum of the preconditioned matrices are also drawn if the diffusion coefficients are constant. Finally, extensive numerical experiments are reported to show the performance of our method for solving the fractional diffusion equations.

MSC:

65M20 Method of lines for initial value and initial-boundary value problems involving PDEs
35K05 Heat equation
35R11 Fractional partial differential equations
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
65L05 Numerical methods for initial value problems involving ordinary differential equations
65F08 Preconditioners for iterative methods
65F10 Iterative numerical methods for linear systems
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs

Software:

FODE

References:

[1] Zaslavsky, G. M.; Stevens, D.; Weitzner, H., Self-similar transport in incomplete chaos, Phys. Rev. E, 48, 1683-1694 (1993)
[2] Carreras, B. A.; Lynch, V. E.; Zaslavsky, G. M., Anomalous diffusion and exit time distribution of particle tracers in plasma turbulence models, Phys. Plasma, 8, 5096-5103 (2001)
[3] Shlesinger, M. F.; West, B. J.; Klafter, J., Lévy dynamics of enhanced diffusion: application to turbulence, Phys. Rev. Lett., 58, 1100-1103 (1987)
[4] Benson, D. A.; Wheatcraft, S. W.; Meerschaert, M. M., Application of a fractional advection-dispersion equation, Water Resour. Res., 36, 1403-1413 (2000)
[5] Benson, D. A.; Wheatcraft, S. W.; Meerschaert, M. M., The fractional-order governing equation of Lévy motion, Water Resour. Res., 36, 1413-1423 (2000)
[6] Magin, R. L., Fractional Calculus in Bioengineering (2006), Begell House Publishers: Begell House Publishers Connecticut, USA
[7] Orsingher, E.; Beghin, L., Fractional diffusion equations and processes with randomly varying time, Ann. Probab., 37, 206-249 (2009) · Zbl 1173.60027
[8] Raberto, M.; Scalas, E.; Mainardi, F., Waiting-times and returns in high-frequency financial data: an empirical study, Physica A, 314, 749-755 (2002) · Zbl 1001.91033
[9] Bai, J.; Feng, X.-C., Fractional-order anisotropic diffusion for image denoising, IEEE Trans. Image Process., 16, 2492-2502 (2007) · Zbl 1119.76377
[10] Blackledge, J. M., Diffusion and fractional diffusion based image processing, (Tang, Wen; Collomosse, John, EG UK Theory and Practice of Computer Graphics (2009), Cardiff), 233-240
[11] Baeumer, B.; Benson, D. A.; Meerschaert, M. M.; Wheatcraft, S. W., Subordinated advection-dispersion equation for contaminant transport, Water Resour. Res., 37, 1543-1550 (2001)
[12] Sokolov, I. M.; Klafter, J.; Blumen, A., Fractional kinetics, Phys. Today, 55, 48-54 (2002)
[13] Langlands, T. A.M.; Henry, B. I., The accuracy and stability of an implicit solution method for the fractional diffusion equation, J. Comput. Phys., 205, 719-736 (2005) · Zbl 1072.65123
[14] Liu, F.; Anh, V. V.; Turner, I. W., Numerical solution of the space fractional Fokker-Planck equation, J. Comput. Appl. Math., 166, 209-219 (2004) · Zbl 1036.82019
[15] Meerschaert, M. M.; Scheffler, H. P.; Tadjeran, C., Finite difference methods for two-dimensional fractional dispersion equation, J. Comput. Phys., 211, 249-261 (2006) · Zbl 1085.65080
[16] Meerschaert, M. M.; Tadjeran, C., Finite difference approximations for fractional advection-dispersion flow equations, J. Comput. Appl. Math., 172, 65-77 (2004) · Zbl 1126.76346
[17] Meerschaert, M. M.; Tadjeran, C., Finite difference approximations for two-sided space-fractional partial differential equations, Appl. Numer. Math., 56, 80-90 (2006) · Zbl 1086.65087
[18] Murio, D. A., Implicit finite difference approximation for time fractional diffusion equations, Comput. Math. Appl., 56, 1138-1145 (2008) · Zbl 1155.65372
[19] Su, L.-J.; Wang, W.-Q.; Yang, Z.-X., Finite difference approximations for the fractional advection-diffusion equation, Phys. Lett. A, 373, 4405-4408 (2009) · Zbl 1234.65034
[20] Deng, W.-H., Finite element method for the space and time fractional Fokker-Planck equation, SIAM J. Numer. Anal., 47, 204-226 (2008) · Zbl 1416.65344
[21] Ervin, V. J.; Heuer, N.; Roop, J. P., Numerical approximation of a time dependent, nonlinear, space-fractional diffusion equation, SIAM J. Numer. Anal., 45, 572-591 (2007) · Zbl 1141.65089
[22] Burrage, K.; Hale, N.; Kay, D., An efficient implicit FEM scheme for fractional-in-space reaction-diffusion equations, SIAM J. Sci. Comput., 34, 2145-2172 (2012) · Zbl 1253.65146
[23] Roop, J. P., Computational aspects of FEM approximation of fractional advection dispersion equations on bounded domains in \(R^2\), J. Comput. Appl. Math., 193, 243-268 (2006) · Zbl 1092.65122
[24] Ji, X.; Tang, H.-Z., High-order accurate Runge-Kutta (local) discontinuous Galerkin methods for one-and two-dimensional fractional diffusion equations, Numer. Math. Theory Methods Appl., 5, 333-358 (2012) · Zbl 1274.65271
[25] Mustapha, K.; McLean, W., Piecewise-linear, discontinuous Galerkin method for a fractional diffusion equation, Numer. Algorithms, 56, 159-184 (2011) · Zbl 1211.65127
[26] Piret, C.; Hanert, E., A radial basis functions method for fractional diffusion equations, J. Comput. Phys., 238, 71-81 (2013) · Zbl 1286.65135
[27] Wang, K.-X.; Wang, H., A fast characteristic finite difference method for fractional advection-diffusion equations, Adv. Water Resour., 34, 810-816 (2011)
[28] Chen, C.-M.; Liu, F.; Turner, I.; Anh, V., A Fourier method for the fractional diffusion equation describing sub-diffusion, J. Comput. Phys., 227, 886-897 (2007) · Zbl 1165.65053
[29] Zhou, H.; Tian, W.-Y.; Deng, W.-H., Quasi-compact finite difference schemes for space fractional diffusion equations, J. Sci. Comput., 56, 45-66 (2013) · Zbl 1278.65130
[30] Mohebbi, A.; Abbaszade, M.; Dehghan, M., A high-order and unconditionally stable scheme for the modified anomalous fractional sub-diffusion equation with a nonlinear source term, J. Comput. Phys., 240, 36-48 (2013) · Zbl 1287.65064
[31] Mustapha, K., An implicit finite difference time-stepping method for a sub-diffusion equation, with spatial discretization by finite elements, IMA J. Numer. Anal., 31, 719-739 (2011) · Zbl 1219.65091
[32] Wang, H.; Wang, K.-X.; Sircar, T., A direct \(O(N \log^2 N)\) finite difference method for fractional diffusion equations, J. Comput. Phys., 229, 8095-8104 (2010) · Zbl 1198.65176
[33] Chan, R.; Jin, X.-Q., An Introduction to Iterative Toeplitz Solvers (2007), SIAM: SIAM Philadelphia, USA · Zbl 1146.65028
[34] Chan, R.; Ng, M., Conjugate gradient methods for Toeplitz systems, SIAM Rev., 38, 427-482 (1996) · Zbl 0863.65013
[35] Pang, H.-K.; Sun, H.-W., Multigrid method for fractional diffusion equations, J. Comput. Phys., 231, 693-703 (2012) · Zbl 1243.65117
[36] Lei, S.-L.; Sun, H.-W., A circulant preconditioner for fractional diffusion equations, J. Comput. Phys., 242, 715-725 (2013) · Zbl 1297.65095
[37] Saad, Y.; Schultz, M., GMRES: A generalized minimal residual algorithm for solving non-symmetric linear systems, SIAM J. Sci. Stat. Comput., 7, 856-869 (1986) · Zbl 0599.65018
[38] Brugnano, L.; Trigiante, D., Solving Differential Problems by Multistep Initial and Boundary Value Methods (1998), Gordon and Breach Science Publishers: Gordon and Breach Science Publishers Amsterdam, Netherlands · Zbl 0934.65074
[39] Amodio, P.; Mazzia, F.; Trigiante, D., Stability of some boundary value methods for the solution of initial value problems, BIT, 33, 434-451 (1993) · Zbl 0795.65041
[40] Brugnano, L.; Trigiante, D., Boundary value methods: the third way between linear multistep and Runge-Kutta methods, Comput. Math. Appl., 36, 269-284 (1998) · Zbl 0933.65082
[41] Lei, S.-L.; Jin, X.-Q., BCCB preconditioners for systems of BVM-based numerical integrators, Numer. Linear Algebra Appl., 11, 25-40 (2004) · Zbl 1164.65397
[42] Podlubny, I., Fractional Differential Equations (1999), Academic Press: Academic Press New York, USA · Zbl 0918.34010
[43] Chan, R.; Strang, G., Toeplitz equations by conjugate gradients with circulant preconditioner, SIAM J. Sci. Stat. Comput., 10, 104-119 (1989) · Zbl 0666.65030
[44] Axelsson, A. O.H.; Verwer, J. G., Boundary value techniques for initial value problems in ordinary differential equations, Math. Comp., 45, 153-171 (1985) · Zbl 0586.65052
[45] Benzi, M.; Golub, G. H., A preconditioner for generalized saddle point problems, SIAM J. Matrix Anal. Appl., 26, 20-41 (2004) · Zbl 1082.65034
[46] Chan, R. H.; Jin, X.-Q.; Tam, Y.-H., Strang-type preconditioners for solving system of ODEs by boundary value methods, Electron. J. Math. Phys. Sci., 1, 14-46 (2002) · Zbl 1002.65075
[47] Davis, P., Circulant Matrices (1979), Wiley: Wiley New York, USA · Zbl 0418.15017
[48] Chan, R.; Ng, M.; Jin, X.-Q., Strang-type preconditioner for systems of LMF-based ODE codes, IMA J. Numer. Anal., 21, 451-462 (2001) · Zbl 0990.65076
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.