×

On geometric perturbations of critical Schrödinger operators with a surface interaction. (English) Zbl 1300.81034

Summary: We study singular Schrödinger operators with an attractive interaction supported by a closed smooth surface \(A\subset \mathbb R^3\) and analyze their behavior in the vicinity of the critical situation where such an operator has empty discrete spectrum and a threshold resonance. In particular, we show that if \(A\) is a sphere and the critical coupling is constant over it, any sufficiently small smooth area-preserving radial deformation gives rise to isolated eigenvalues. On the other hand, the discrete spectrum may be empty for general deformations. We also derive a related inequality for capacities associated with such surfaces. {
©2009 American Institute of Physics}

MSC:

81Q10 Selfadjoint operator theory in quantum theory, including spectral analysis
35J10 Schrödinger operator, Schrödinger equation
47G30 Pseudodifferential operators

References:

[1] DOI: 10.1063/1.1914728 · Zbl 1110.81076 · doi:10.1063/1.1914728
[2] DOI: 10.1007/s11005-006-0087-1 · doi:10.1007/s11005-006-0087-1
[3] DOI: 10.1007/s11005-006-0087-1 · doi:10.1007/s11005-006-0087-1
[4] DOI: 10.1016/S0040-9383(02)00016-2 · Zbl 1030.57006 · doi:10.1016/S0040-9383(02)00016-2
[5] DOI: 10.1007/BF02760067 · Zbl 0147.22302 · doi:10.1007/BF02760067
[6] DOI: 10.1016/j.physleta.2007.03.067 · Zbl 1209.35090 · doi:10.1016/j.physleta.2007.03.067
[7] DOI: 10.1006/jmaa.1994.1188 · Zbl 0820.47005 · doi:10.1006/jmaa.1994.1188
[8] DOI: 10.1006/jfan.2000.3730 · Zbl 0981.47022 · doi:10.1006/jfan.2000.3730
[9] DOI: 10.1090/pspum/076.1/2310209 · doi:10.1090/pspum/076.1/2310209
[10] DOI: 10.1515/9781400882663 · Zbl 0044.38301 · doi:10.1515/9781400882663
[11] Stein E. M., Princeton Mathematical, in: Singular Integrals and Differentiability Properties of Functions (1970)
[12] Reed M., Methods of Modern Mathematical Physics, in: Analysis of Operators (1978) · Zbl 0401.47001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.