×

The Milnor triple linking number of string links by cut-and-paste topology. (English) Zbl 1297.55016

Let \(\mathcal{L}_k\) be the space of \(k\)-component long links in \(\mathbb{R}^3\), i.e. embeddings of \(k\) disjoint copies of \(\mathbb{R}^3\) that are fixed outside a compact set. The paper under review exhibits the Milnor triple linking number, an integer-valued invariant of 3-component string links, via a homotopy-theoretic Pontrjagin-Thom construction.
More precisely, the author takes as the starting point the results from [R. Koytcheff et al., J. Knot Theory Ramifications 22, No. 11, Article ID 1350061, 73 p. (2013; Zbl 1307.57015)] where it is shown that an adaptation of Bott-Taubes, or configuration space, integration to string links yields all finite type invariants of these spaces. Since Milnor invariants are finite type (for string links), it follows that some combination of these integrals gives the Milnor triple linking. This is precisely what the author first proves – the sum of configuration space integrals over four particular diagrams is the triple linking.
Next, the author applies a Pontrjagin-Thom approach that he developed in a previous work [R. Koytcheff, Algebr. Geom. Topol. 9, No. 3, 1467–1501 (2009; Zbl 1175.57012)] to this situation. Rather than collapsing the boundaries of certain manifolds with corners that appear in Bott-Taubes integration, as he had previously done, he glues this boundary in order for its contribution to integration to cancel out. This part is inspired by Kuperberg and Thurston’s techniques from “Perturbative 3-manifold invariants by cut-and-paste topology”. There is then a map from \(S^6\) to the quotient of these bundles modulo the glued boundary and further from this space to \(S^2\times S^2\times S^2\). The composite is the map that defines a certain 6-dimensional cohomology class on \(S^6\), and the main result is that pairing this class with the fundamental class gives precisely the triple linking.
This interpretation of the Milnor triple linking number is nice, and the reviewer looks forward to seeing the promised work of realizing all the Bott-Taubes classes of string links via such gluing brought to fruition.

MSC:

55R80 Discriminantal varieties and configuration spaces in algebraic topology
57M27 Invariants of knots and \(3\)-manifolds (MSC2010)
55R12 Transfer for fiber spaces and bundles in algebraic topology
57R40 Embeddings in differential topology

References:

[1] J W Auer, Fiber integration and Poincaré duality, Tensor 33 (1979) 72 · Zbl 0377.55015
[2] S Axelrod, I M Singer, Chern-Simons perturbation theory, II, J. Differential Geom. 39 (1994) 173 · Zbl 0827.53057
[3] D Bar-Natan, On the Vassiliev knot invariants, Topology 34 (1995) 423 · Zbl 0898.57001 · doi:10.1016/0040-9383(95)93237-2
[4] D Bar-Natan, Vassiliev homotopy string link invariants, J. Knot Theory Ramifications 4 (1995) 13 · Zbl 0878.57003 · doi:10.1142/S021821659500003X
[5] R Bott, C Taubes, On the self-linking of knots: Topology and physics, J. Math. Phys. 35 (1994) 5247 · Zbl 0863.57004 · doi:10.1063/1.530750
[6] R Bott, L W Tu, Differential forms in algebraic topology, Graduate Texts in Mathematics 82, Springer (1982) · Zbl 0496.55001
[7] A S Cattaneo, P Cotta-Ramusino, R Longoni, Configuration spaces and Vassiliev classes in any dimension, Algebr. Geom. Topol. 2 (2002) 949 · Zbl 1029.57009 · doi:10.2140/agt.2002.2.949
[8] D DeTurck, H Gluck, R Komendarczyk, P Melvin, C Shonkwiler, D S Vela-Vick, Triple linking numbers, ambiguous Hopf invariants and integral formulas for three-component links, Mat. Contemp. 34 (2008) 251 · Zbl 1194.57007
[9] W Fulton, R MacPherson, A compactification of configuration spaces, Ann. of Math. 139 (1994) 183 · Zbl 0820.14037 · doi:10.2307/2946631
[10] W Greub, S Halperin, R Vanstone, Connections, curvature, and cohomology, Vol. I: De Rham cohomology of manifolds and vector bundles, Pure and Applied Mathematics 47, Academic Press (1972) · Zbl 0322.58001
[11] N Habegger, X S Lin, The classification of links up to link-homotopy, J. Amer. Math. Soc. 3 (1990) 389 · Zbl 0704.57016 · doi:10.2307/1990959
[12] K Jänich, On the classification of \(O(n)\)-manifolds, Math. Ann. 176 (1968) 53 · Zbl 0153.53801 · doi:10.1007/BF02052956
[13] D Joyce, On manifolds with corners (editors S Janeczko, J Li, D H Phong), Advanced Lectures in Mathematics 21, International Press (2012) 225 · Zbl 1317.58001
[14] M Kontsevich, Feynman diagrams and low-dimensional topology (editors A Joseph, F Mignot, F Murat, B Prum, R Rentschler), Progr. Math. 120, Birkhäuser (1994) 97 · Zbl 0872.57001
[15] R Koytcheff, A homotopy-theoretic view of Bott-Taubes integrals and knot spaces, Algebr. Geom. Topol. 9 (2009) 1467 · Zbl 1175.57012 · doi:10.2140/agt.2009.9.1467
[16] R Koytcheff, B Munson, I Volić, Configuration space integrals and the cohomology of the space of homotopy string links, (2013) · Zbl 1307.57015 · doi:10.1142/S0218216513500612
[17] G Kuperberg, D Thurston, Pertubative \(3\)-manifold invariants by cut-and-paste topology, (2000)
[18] G Laures, On cobordism of manifolds with corners, Trans. Amer. Math. Soc. 352 (2000) 5667 · Zbl 0954.55008 · doi:10.1090/S0002-9947-00-02676-3
[19] C Lescop, On the Kontsevich-Kuperberg-Thurston construction of a configuration-space invariant for rational homology \(3\)-spheres, Prépublication 655 (2004)
[20] B Mellor, Weight systems for Milnor invariants, J. Knot Theory Ramifications 17 (2008) 213 · Zbl 1234.57015 · doi:10.1142/S0218216508006063
[21] B Mellor, P Melvin, A geometric interpretation of Milnor’s triple linking numbers, Algebr. Geom. Topol. 3 (2003) 557 · Zbl 1040.57007 · doi:10.2140/agt.2003.3.557
[22] J Milnor, Link groups, Ann. of Math. 59 (1954) 177 · Zbl 0055.16901 · doi:10.2307/1969685
[23] J Milnor, Isotopy of links: Algebraic geometry and topology (editors R H Fox, D C Spencer, A W Tucker), Princeton Univ. Press (1957) 280
[24] K Pelatt, A geometric homology representative in the space of long knots, · Zbl 1366.57014
[25] M Polyak, Skein relations for Milnor’s \(\mu\)-invariants, Algebr. Geom. Topol. 5 (2005) 1471 · Zbl 1092.57012 · doi:10.2140/agt.2005.5.1471
[26] V V Prasolov, A B Sossinsky, Knots, links, braids and \(3\)-manifolds: An introduction to the new invariants in low-dimensional topology, Translations of Mathematical Monographs 154, Amer. Math. Soc. (1997) · Zbl 0864.57002
[27] D Thurston, Integral expressions for the Vassiliev knot invariants, AB thesis, Harvard University (1995)
[28] V Turchin, Context-free manifold calculus and the Fulton-MacPherson operad, Algebr. Geom. Topol. 13 (2013) 1243 · Zbl 1275.57034 · doi:10.2140/agt.2013.13.1243
[29] I Volić, A survey of Bott-Taubes integration, J. Knot Theory Ramifications 16 (2007) 1 · Zbl 1128.57013 · doi:10.1142/S0218216507005178
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.