×

A class of \(d\)-dimensional Dirac operators with a variable mass. (English) Zbl 1286.81077

Summary: A class of \(d\)-dimensional Dirac operators with a variable mass is introduced \((d\geq 2)\), which includes, as a special case, the 3-dimensional Dirac operator describing the chiral quark soliton model in nuclear physics, and some aspects of it are investigated.

MSC:

81Q10 Selfadjoint operator theory in quantum theory, including spectral analysis
Full Text: DOI

References:

[1] N. Sawado and N. Shiiki, “Degeneracy of the quarks, shell structure in the chiral soliton,” Nuclear Physics A, vol. 739, no. 1-2, pp. 89-108, 2004. · doi:10.1016/j.nuclphysa.2004.03.147
[2] H. Kalf and O. Yamada, “Essential self-adjointness of n-dimensional Dirac operators with a variable mass term,” Journal of Mathematical Physics, vol. 42, no. 6, pp. 2667-2676, 2001. · Zbl 1015.81022 · doi:10.1063/1.1367331
[3] A. Arai, K. Hayashi, and I. Sasaki, “Spectral properties of a Dirac operator in the chiral quark soliton model,” Journal of Mathematical Physics, vol. 46, no. 5, Article ID 052306, 12 pages, 2005. · Zbl 1110.81073 · doi:10.1063/1.1896388
[4] A. Arai, “Mathematical analysis of a generalized chiral quark soliton model,” Symmetry, Integrability and Geometry. Methods and Applications, vol. 2, paper 018, 12 pages, 2006. · Zbl 1093.81059 · doi:10.3842/SIGMA.2006.018
[5] T. Miyao, “Nonrelativistic limit of the abstract chiral quark soliton model and confining effects,” Journal of Operator Theory, vol. 57, no. 2, pp. 429-441, 2007. · Zbl 1122.47060
[6] B. Thaller, The Dirac Equation, Texts and Monographs in Physics, Springer, Berlin, Germany, 1992. · Zbl 0881.47021
[7] S. Pedersen, “Anticommuting selfadjoint operators,” Journal of Functional Analysis, vol. 89, no. 2, pp. 428-443, 1990. · Zbl 0704.47020 · doi:10.1016/0022-1236(90)90101-P
[8] F.-H. Vasilescu, “Anticommuting selfadjoint operators,” Revue Roumaine de Mathématiques Pures et Appliquées, vol. 28, no. 1, pp. 76-91, 1983. · Zbl 0525.47017
[9] M. Reed and B. Simon, Methods of Modern Mathematical Physics. vol. 1. Functional Analysis, Academic Press, New York, NY, USA, 1972. · Zbl 0242.46001
[10] M. Reed and B. Simon, Methods of Modern Mathematical Physics. vol. 4. Analysis of Operators, Academic Press, New York, NY, USA, 1978. · Zbl 0401.47001
[11] M. Reed and B. Simon, Methods of Modern Mathematical Physics. vol. 2. Fourier Analysis, Self-Adjointness, Academic Press, New York, NY, USA, 1975. · Zbl 0308.47002
[12] T. Kato, Perturbation Theory for Linear Operators, Springer, Berlin, Germany, 2nd edition, 1976. · Zbl 0342.47009
[13] C. Cancelier, P. Lévy-Bruhl, and J. Nourrigat, “Remarks on the spectrum of Dirac operators,” Acta Applicandae Mathematicae, vol. 45, no. 3, pp. 349-364, 1996. · Zbl 0861.35067 · doi:10.1007/BF00047028
[14] M. Cwikel, “Weak type estimates for singular values and the number of bound states of Schrödinger operators,” vol. 106, no. 1, pp. 93-100, 1977. · Zbl 0362.47006 · doi:10.2307/1971160
[15] B. Simon, Trace Ideals and Their Applications, vol. 120 of Mathematical Surveys and Monographs, American Mathematical Society, Providence, RI, USA, Second edition, 2005. · Zbl 1074.47001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.