×

Gaussian skewness approximation for dynamic rate multi-server queues with abandonment. (English) Zbl 1285.60091

The paper under review studies \(M(t)/M/c(t)+M\) queueing systems, where \(M(t)\) in the first position denotes a non-homogeneous Poisson arrival Process, \(M\) in the second position denotes exponentially distributed service time, \(c(t)\) denotes the number of agents (servers) at time \(t\) and \(+M\) in the last position denotes the exponential distribution for an abandonment time. This model is referred to as Erlang-A model, see [N. Gans, G. Koole and A. Mandelbaum, “Telephone call centers: tutorial, review and research prospects”, Manuf. Serv. Oper. Manag. 5, No. 2, 79–141 (2003)] and describes large scale service systems such as call centers or hospitals. The paper presents a simple method generating new algorithms that are successively better approximations of the stochastic dynamics for the \(M(t)/M/c(t)+M\) queueing system that are known for this type of system from the available literature, see [Y. M. Ko and N. Gautam, INFORMS J. Computing; A.Mandelbaum et al., Queueing Syst. 30, No. 1–2, 149–201 (1998; Zbl 0911.90167); A. Mandelbaum et al., “Queue lengths and waiting times for multi-server queues with abandonment and retrials”, Telecommun. Syst. 21, 149–172 (2002)]. This is achieved by computing a low dimensional, deterministic dynamic system.

MSC:

60K25 Queueing theory (aspects of probability theory)
33C45 Orthogonal polynomials and functions of hypergeometric type (Jacobi, Laguerre, Hermite, Askey scheme, etc.)
90B22 Queues and service in operations research

Citations:

Zbl 0911.90167
Full Text: DOI

References:

[1] Eick, S., Massey, W.A., Whitt, W.: The physics of the \[M(t)/G/\infty\] queue. Oper. Res. 41, 400-408 (1993) · Zbl 0781.60086 · doi:10.1287/opre.41.4.731
[2] Fedoryuk, M.V.: Hermite polynomials. In: Hazewinkel, M. Encyclopaedia of mathematics. Springer. ISBN 978-1556080104. http://eom.springer.de/H/h046980.htm (2001) · Zbl 1173.90362
[3] Fortuin, C.M., Kasteleyn, P.N., Ginibre, J.: Correlation inequalities for some partially ordered sets. Commun. Math. Phys. 22(2), 89-103 (1971) · Zbl 0346.06011 · doi:10.1007/BF01651330
[4] Gans, N., Koole, G., Mandelbaum, A.: Telephone call centers: tutorial, review and research prospects. Manuf. Serv. Oper. Manag. 5(2), 79-141 (2003) · doi:10.1287/msom.5.2.79.16071
[5] Halfin, S., Whitt, W.: Heavy-traffic limit theorems for queues with many exponential servers. Oper. Res. 29, 567-588 (1981) · Zbl 0455.60079 · doi:10.1287/opre.29.3.567
[6] Hampshire, R.C.: Dynamic queueing models for the operations management of communication services. Ph.D. thesis, Princeton University (2007)
[7] Hampshire, R.C., Jennings, O.B., Massey, W.A.: A time varying call center design with Lagrangian mechanics. Probab. Eng. Inf. Sci. 23(2), 231-259 (2009) · Zbl 1173.90362 · doi:10.1017/S0269964809000151
[8] Hampshire, R.C., Massey, W.A.: A tutorial on dynamic optimization and applications to queueing systems with time-varying rates. Tutor. Oper. Res. 23(2), 231-259 (2010)
[9] Kernighan, B.W., Ritchie, D.M.: C programming language. PTR Prentice Hall, Englewood Cliffs (1988) · Zbl 0701.68014
[10] Khintchine, A.Y.: Mathematical methods in the theory of queueing (in Russian), Trudy Mat Inst. Steklov Vol. 49 (1955) (English translation by Charles Griffin and Co., London, 1960) · Zbl 0092.34302
[11] Ko, Y.M., Gautam, N.: Critically loaded time-varying multiserver queues: computational challenges and approximations. INFORMS J. Comput. (2012) to appear
[12] Mandelbaum, A., Massey, W.A.: Strong approximations for time-dependent queues. Math. Oper. Res. 20(1), 33-64 (1995) · Zbl 0834.60096 · doi:10.1287/moor.20.1.33
[13] Mandelbaum, A., Massey, W.A., Reiman, M.: Strong approximations for Markovian service networks. Queueing Syst. 30, 149-201 (1998) · Zbl 0911.90167 · doi:10.1023/A:1019112920622
[14] Mandelbaum, A., Massey, W.A., Reiman, M., Rider, B., Stolyar, A.: Queue lengths and waiting times for multi-server queues with abandonment and retrials. Telecommun. Syst. 21, 149-172 (2002) · doi:10.1023/A:1020921829517
[15] Massey, W.A.: Asymptotic analysis of the time dependent M/M/1 queue. Math. Oper. Res. 54(2), 324-338 (1985)
[16] Nualart, D.: The Malliavin calculus and related topics. Springer, New York (1995) · Zbl 0837.60050
[17] Palm, C.: Intensity variations in telephone traffic. Ericsson Tech. 44, 1-189 (1943)
[18] Prékopa, A.: On Poisson and composed Poisson stochastic set functions. Stud. Math. 16, 142-155 (1957) · Zbl 0208.43503
[19] Ross, S.: Simulation, 4th edn. Elsevier Academic Press, Amsterdam (2006) · Zbl 1111.65008
[20] Rothkopf, M.H., Oren, S.S.: A closure approximation for the nonstationary \[M/M/s\] queue. Manag. Sci. 25(6), 522-534 (1979) · Zbl 0427.90042 · doi:10.1287/mnsc.25.6.522
[21] Stein, C.M.: Approximate computation of expectations. Lecture notes monograph series, vol. 7. Institute of Mathematical Statistics, Hayward (1986) · Zbl 0721.60016
[22] Strogatz, S.: Nonlinear dynamics and chaos. Westview Press, Boulder (1994)
[23] Taaffe, M.R., Ong, K.L.: Approximating nonstationary \[Ph(t)/M(t)/s/c\] queueing systems. Ann. Oper. Res. 8, 103-116 (1987) · doi:10.1007/BF02187085
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.