×

Quantitative recurrence properties for beta-dynamical system. (English) Zbl 1284.11113

Summary: This note is concerned with the quantitative recurrence properties of beta dynamical system \(([0,1],T_\beta)\) for general \(\beta >1\); the size of points with the prescribed recurrence rate is determined. More precisely, Hausdorff dimensions of the sets
\[ \{x\in [0,1]: | T_\beta^n x-x|<\psi(n)\;\text{for infinitely many}\;n\in\mathbb N\} \] and \[ \{x\in [0,1]: | T_\beta^n x-x|<e^{-\sum_{j=0}^{n-1} f(T_\beta^j x)}\;\text{for infinitely many}\;n\in\mathbb N\} \] are obtained completely, where \(\psi \) is a positive function defined on \(\mathbb N\) and \(f\) is a positive continuous function on \([0,1]\). Besides, the pressure function \(P(f,T_\beta )\) with a continuous potential \(f\) is proven to be continuous with respect to \(\beta \).

MSC:

11K55 Metric theory of other algorithms and expansions; measure and Hausdorff dimension
28A80 Fractals
37A45 Relations of ergodic theory with number theory and harmonic analysis (MSC2010)
Full Text: DOI

References:

[1] Barreira, L.; Saussol, B., Hausdorff dimension of measures via Poincaré recurrence, Comm. Math. Phys., 219, 443-463 (2001) · Zbl 1007.37012
[2] Boshernitzan, M., Quantitative recurrence results, Invent. Math., 113, 617-631 (1993) · Zbl 0839.28008
[3] Chernov, N.; Kleinbock, D., Dynamical Borel-Cantelli lemma for Gibbs measures, Israel J. Math., 122, 1-27 (2001) · Zbl 0997.37002
[4] Falconer, K. J., Fractal Geometry - Mathematical Foundations and Application (1990), Wiley: Wiley New York · Zbl 0689.28003
[5] Färm, D.; Persson, T.; Schmeling, J., Dimension of countable intersections of some sets arising in expansions in non-integer bases, Fund. Math., 209, 157-176 (2010) · Zbl 1211.37047
[6] Fernández, J. L.; Melián, M. V.; Pestana, D., Quantitative mixing results and inner functions, Math. Ann., 337, 233-251 (2007) · Zbl 1125.30019
[7] Fernández, J. L.; Melián, M. V.; Pestana, D., Quantitative recurrence properties of expanding maps (2007) · Zbl 1125.30019
[8] Hill, R.; Velani, S., The ergodic theory of shrinking targets, Invent. Math., 119, 175-198 (1995) · Zbl 0834.28009
[9] Hill, R.; Velani, S., Metric diophantine approximation in Julia sets of expanding rational maps, Inst. Hautes Etudes Sci. Publ. Math., 85, 193-216 (1997) · Zbl 0885.11051
[10] Hill, R.; Velani, S., The shrinking target problems for matrix transformations of tori, J. Lond. Math. Soc., 60, 2, 381-398 (1999) · Zbl 0987.37008
[11] Parry, W., On the \(β\)-expansions of real numbers, Acta Math. Acad. Sci. Hunger., 11, 401-416 (1960) · Zbl 0099.28103
[12] Pfister, C.-E.; Sullivan, W. G., Large deviations estimates for dynamical systems without the specification property. Applications to the \(β\)-shifts, Nonlinearity, 18, 237-261 (2005) · Zbl 1069.60029
[13] Rényi, A., Representations for real numbers and their ergodic properties, Acta Math. Acad. Sci. Hunger., 8, 477-493 (1957) · Zbl 0079.08901
[14] Schmeling, J., Symbolic dynamics for \(β\)-shifts and self-normal numbers, Ergodic Theory Dynam. Systems, 17, 675-694 (1997) · Zbl 0908.58017
[15] Thompson, D., Irregular sets, the \(β\)-transformation and the almost specification property (2009)
[16] Walters, P., An Introduction to Ergodic Theory, Grad. Texts in Math., vol. 79 (1982), Springer-Verlag: Springer-Verlag New York/Berlin · Zbl 0475.28009
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.