×

Transformation formulas for the generalized hypergeometric function with integral parameter differences. (English) Zbl 1275.33009

The generalized hypergeometric function \(_{p}F_{q}\) is defined for complex parameters and argument by the series \[ _{p}F_{q} ( (a_{p}); (b_{q}) |x)= \sum_ {k=0}^{\infty} \frac {((a_{p}))_{k}}{((b_{q}))_{k}} \frac{x^{k}}{k!}, \]
where \((a_{p})= (a_{1}, \dotsc , a_{p})\) as well as \( ((a_{p}))_{k}= (a_{1})_{k}(a_{2})_{k} \dotsm (a_{p})_{k}\) denotes the Pochhammer symbol for the vector \((a_{p})\). Notice that this series converges for \(|x|< \infty\) when \(q\geq p\), while it converges in \(|x|<1\) when \(q=p-1\). Notice that when one of the parameters \(a_{j}\) in the numerator is a negative integer or zero, the above series become a polynomial of degree \(-a_{j}\) in the variable \(x\).
In this contribution, the authors deal with transformation formulas for the hypergeometric functions \(_{r+2}F_{r+1}\) and \(_{r+1 }F_{r+1},\) respectively, whose numerator and denominator parameters differ by positive integers \((m_{r})\). Indeed, they prove that
\[ _{r+2}F_{r+1} (a, b, (f_{r}+ m_{r}); c, (f_{r})| x)= (1-x)^{-a} \,\;_{m+2} F_{m+1} (a, \lambda, (\xi_{m}+1); c, (\xi_{m}) |\frac{x}{x-1}),\tag{i} \] for \(|x|<1,\;\operatorname{Re}\;x <1/2\). \[ _{r+2}F_{r+1} (a, b, (f_{r}+ m_{r}); c, (f_{r})| x)= (1-x)^{c-a-b-m} \,\;_{m+2} F_{m+1} (\lambda, \lambda ', (\eta_{m}+1); c, (\eta_{m})| x ),\tag{ii} \] for \(|x|<1\). \[ _{r+1}F_{r+1} (b, (f_{r}+ m_{r}); c, (f_{r})| x)= e^{x} \,\;_{m+1} F_{m+1} (\lambda, (\xi_{m}+1); c, (\xi_{m}) | -x),\tag{iii} \] for \(|x|<\infty\).
In these transformation formulas, \(m= \sum_{k=1}^{r} m_{k}\), \(\lambda= c-b- m \), \(\lambda ' = c- a- m\). The entries of the vectors \((\xi_{m})\) and \((\eta_{m})\) are non vanishing zeros of certain associated parametric polynomials of degree \(m\), denoted by \(Q_{m}(x)\), assuming certain restrictions on some of the parameters of the generalized hypergeometric functions on both sides of (i)–(iii) (see A. R. Miller [J. Comput. Appl. Math. 231, No. 2, 964–972 (2009; Zbl 1221.33011)]).
When \((m_{r})\) is empty, i.e., \(m=0\), (i)–(ii) become Euler’s classical first and second transformations for the Gauss hypergeometric function while (iii) yields Kummer’s transformation formula for the confluent hypergeometric function. If \(m_{1}= \dotsb = m_{r}=1\), transformation formulas (i)–(ii) have been analyzed in [A. R. Miller and R. B. Paris, Z. Angew. Math. Phys. 62, No. 1, 31–45 (2011; Zbl 1225.33005)], while (iii) was obtained in [A. R. Miller, loc. cit.].
The explicit expression of the polynomial \(Q_{m}(x)\) for the above transformations is deduced. On the other hand, for \(_{r+2}F_{r+1}\), two generalizations of the well-known quadratic transformation formulas for the Gauss hypergeometric functions are given. Here parameter sequences in numerator and denominator are, again, zeros of a polynomial \(Q_{m}(x)\) whose explicit expression is done.
Some examples of the above results are shown when \(r=2\) for particular choices of \((m_{1},m_{2})\).

MSC:

33C15 Confluent hypergeometric functions, Whittaker functions, \({}_1F_1\)
33C20 Generalized hypergeometric series, \({}_pF_q\)

References:

[1] M. Abramowitz and I.A. Stegun, eds., Handbook of mathematical functions , Dover, New York, 1965.
[2] G.E. Andrews, R. Askey and R. Roy, Special functions , Encycl. Math. Appl. 71 , Cambridge University Press, Cambridge, 1999. · Zbl 0920.33001
[3] W. Chu and W. Zhang, Transformations of Kummer-type for \({}_2F_2\)-series and their \(q\)-analogues , J. Comput. Appl. Math. 216 (2008), 467-473. · Zbl 1143.33005 · doi:10.1016/j.cam.2007.05.024
[4] H. Exton, On the reducibility of the Kampé de Fériet function , J. Comput. Appl. Math. 83 (1997), 119-121. · Zbl 0880.33012 · doi:10.1016/S0377-0427(97)86597-1
[5] R.L. Graham, D.E. Knuth and O. Patashnik, Concrete mathematics , second edition, Addison-Wesley, Upper Saddle River, 1994. · Zbl 0836.00001
[6] H. Ki and Y.-O. Kim, On the zeros of some generalized hypergeometric functions , J. Math. Anal. Appl. 243 (2000), 249-260. · Zbl 0951.33006 · doi:10.1006/jmaa.1999.6662
[7] R.S. Maier, \(P\)-symbols, Heun identities, and \({}_3F_2\) identities , Contemp. Math. 471 (2008), 139-159. · Zbl 1185.33028 · doi:10.1090/conm/471/09211
[8] A.R. Miller, Certain summation and transformation formulas for generalized hypergeometric series , J. Comput. Appl. Math. 231 (2009), 964-972. · Zbl 1221.33011 · doi:10.1016/j.cam.2009.05.013
[9] —, A summation formula for Clausen’s series \({}_3F_2(1)\) with an application to Goursat’s function \({}_2F_2(x)\) , J. Phys. Math. Gen. 38 (2005), 3541-3545. · Zbl 1068.33009 · doi:10.1088/0305-4470/38/16/005
[10] —, On a Kummer-type transformation for the generalized hypergeometric function \({}_2F_2\) , J. Comput. Appl. Math. 157 (2003), 507-509. · Zbl 1025.33003 · doi:10.1016/S0377-0427(03)00383-2
[11] A.R. Miller and R.B. Paris, A generalized Kummer-type transformation for the \({}_pF_p(x)\) hypergeometric function , Canad. Math. Bull. 55 (2012), 571-578. · Zbl 1314.33006 · doi:10.4153/CMB-2011-095-6
[12] A.R. Miller and R.B. Paris, Euler-type transformations for the generalized hypergeometric function \({}_{r+2}F_{r+1}(x)\) , Z. Angew. Math. Phys. 62 (2011), 31-45. · Zbl 1225.33005 · doi:10.1007/s00033-010-0085-0
[13] —, Certain transformations and summations for generalized hypergeometric series with integral parameter differences , Integral Transf. Special Funct. 22 (2011), 67-77. · Zbl 1217.33013 · doi:10.1080/10652469.2010.498001
[14] A.R. Miller and H.M. Srivastava, Karlsson-Minton summation theorems for the generalized hypergeometric series of unit argument , Integr. Transf. Spec. Funct. 21 (2010), 603-612. · Zbl 1200.33007 · doi:10.1080/10652460903497259
[15] R.B. Paris, A Kummer-type transformation for a \({}_2F_2\) hypergeometric function , J. Comput. Appl. Math. 173 (2005), 379-382. · Zbl 1062.33008 · doi:10.1016/j.cam.2004.05.005
[16] A.P. Prudnikov, Yu.A. Brychkov and O.I. Marichev, Integrals and series , vol. 3, Gordon and Breach, New York, 1990. · Zbl 1103.33300
[17] M.A. Rakha, A.K. Rathie and P. Chopra, On an extension of a quadratic transformation formula due to Gauss , Int. J. Math. Model. Comp. 61 (2011), 171-174.
[18] M.A. Rakha, N. Rathie and P. Chopra, On an extension of a quadratic transformation formula due to Kummer , Math. Comm. 14 (2009), 207-209. · Zbl 1183.33006
[19] A.K. Rathie and R.B. Paris, An extension of the Euler-type transformation for the \({}_3F_2\) series , Far East J. Math. Sci. 27 (2007), 43-48. · Zbl 1151.33006
[20] H.M. Srivastava and H.L. Manocha, A treatise on generating functions , Ellis Horwood, Chichester, 1984. \noindentstyle · Zbl 0535.33001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.