×

Derivations, the Lawrence-Sullivan interval and the Fiorenza-Manetti mapping cone. (English) Zbl 1264.55008

Let \(f:X\to Y\) be a map between nilpotent CW-complexes of finite type and \(\text{map}^*_f(X,Y)\) the path-component of the space of based maps from \(X\) to \(Y\) containing the map \(f\). Let \(C\) be a finite type graded differential coalgebra model of \(X\) and let \(M\) be a Lie algebra model of \(Y\). Let \({\mathcal L}(C)\) denote the Quillen functor on \(C\) and let \(\gamma^{\prime}:{\mathcal L}(C) \to M\) be a model for \(f\). Then it is known that the graded vector space \(s^{-1}Der_{\gamma^{\prime}}({\mathcal L}(C),M)\) of derivations becomes a Lie model of \(\text{map}^*_f(X,Y)\). Similarly, let \({\mathcal Q}\) denote the Quillen minimal model of \(X\) and let \(\gamma :{\mathcal Q}\to M\) be any Lie model of \(f\). Then it is also known that there is a natural \(L_{\infty}\)-structure on \(s^{-1}Der_{\gamma}({\mathcal Q},M)\) encoding the higher Whitehead products on the rational homotopy groups of \(\text{map}^*_f(X,Y)\).
As the first step, the authors prove that the two \(L_{\infty}\)-algebra \(s^{-1}Der_{\gamma^{\prime}}({\mathcal L}(C),M)\) and \(s^{-1}Der_{\gamma}({\mathcal Q},M)\) are quasi-isomorphic.
Next, they consider the Lawrence-Sullivan completed Lie model of the interval \({\mathcal I}\) and they prove that \(s^{-1}Der ({\mathcal I},M)\) and \(s^{-1}Der({\mathcal L}(C),M)\) are quasi-isomorphic as \(L_{\infty}\)-algebras for any differential graded Lie algebra \(M\). In particular, they show that \(s^{-1}Der ({\mathcal I},M)\) is an \(L_{\infty}\)-model of the based path space \(PY=\text{map}^*(I,Y)\) for any Lie model \(M\) of a nilpotent complex \(Y\).
Finally, let \(\chi :L\to M\) be a differential Lie algebra homomorphism and \(C_{\chi}\) be its suspended mapping cone. Then they prove that \(C_{\chi}\) and \(L\times_Ms^{-1}Der ({\mathcal I},M)\) are strongly isomorphic as \(L_{\infty}\) algebras, and they obtain an explicit and close relation between the Lawrence-Sullivan model for the interval and the Fiorenza-Manetti mapping cone.

MSC:

55P62 Rational homotopy theory
54C35 Function spaces in general topology
Full Text: DOI

References:

[1] Baues H.J., Lemaire J.-M.: Minimal models in homotopy theory. Math. Ann. 225(3), 219-242 (1977) · Zbl 0322.55019 · doi:10.1007/BF01425239
[2] Buijs U.: An explicit L∞ structure for the components of mapping spaces. Topol. Appl. 159(3), 721-732 (2012) · Zbl 1241.55007 · doi:10.1016/j.topol.2011.11.030
[3] Buijs U., Murillo A.: The rational homotopy Lie algebra of function spaces. Comment. Math. Helv. 83, 723-739 (2008) · Zbl 1169.55006 · doi:10.4171/CMH/141
[4] Buijs, U., Murillo, A.: Algebraic models of non connected spaces and homotopy theory of L∞ algebras. (2012, preprint) · Zbl 1270.55010
[5] Buijs, U., Félix, Y., Murillo, A.: L∞ rational homotopy theory of mapping spaces. (2012, preprint) · Zbl 1334.55003
[6] Buijs U., Félix Y., Murillo A.: L∞ models of mapping spaces. J. Math. Soc. Jpn. 63(2), 503-524 (2011) · Zbl 1252.55006 · doi:10.2969/jmsj/06320503
[7] Chas, M., Sullivan, D.: String topology. Ann. Math. (to appear) · Zbl 1185.55013
[8] Félix, Y., Halperin, S., Thomas, J.: Rational homotopy theory. Graduate texts in Mathematics, vol. 205. Springer, New York (2000) · Zbl 1325.55001
[9] Fiorenza D., Manetti M.: L∞ structures on mapping cones. Algebr. Number Theory 1(3), 301-330 (2007) · Zbl 1166.17010 · doi:10.2140/ant.2007.1.301
[10] Fukaya, K.: Deformation theory, homological algebra and mirror symmetry. Geometry and physics of branes (Como, 2001). Ser. High Energy Phys. Cosmol. Gravit., pp. 121-209. IOP, Bristol (2003) · Zbl 1152.17010
[11] Getzler E.: Lie theory for nilpotent L∞ algebras. Ann. Math (2) 170(1), 271-301 (2009) · Zbl 1246.17025 · doi:10.4007/annals.2009.170.271
[12] Henriques A.: Integrating L∞ algebras. Compos. Math. 144(4), 1017-1045 (2008) · Zbl 1152.17010 · doi:10.1112/S0010437X07003405
[13] Huebschmann J., Kadeishvili T.: Small models for chain algebras. Math. Z. 207(2), 245-280 (1991) · Zbl 0723.57030 · doi:10.1007/BF02571387
[14] Kadeishvili T.V.: The algebraic structure in the homology of an A(∞)-algebra. Soobshch. Akad. Nauk Gruzin. SSR 108(2), 249-252 (1983) · Zbl 0535.55005
[15] Kontsevich M.: Deformation quantization of Poisson manifolds. Lett. Math. Phys. 66(3), 157-216 (2003) · Zbl 1058.53065 · doi:10.1023/B:MATH.0000027508.00421.bf
[16] Kontsevich, M., Soibelman, Y.: Deformations of algebras over operads and Deligne’s conjecture. In: Dito G., Sternheimer D. (eds.) Conférence Moshé Flato 1999, vol. I (Dijon, 1999), pp. 255-307. Kluwer, Dordrecht (2000) · Zbl 0972.18005
[17] Kontsevich, M., Soibelman, Y.: Homological mirror symmetry and torus fibrations. Symplectic geometry and mirror symmetry (Seoul, 2000), pp. 203-263. World Scientific Publishing, River Edge (2001) · Zbl 1072.14046
[18] Lada T., Markl M.: Strongly homotopy Lie algebras. Comm. Algebra 23(6), 2147-2161 (1995) · Zbl 0999.17019 · doi:10.1080/00927879508825335
[19] Lada T., Stasheff J.: Introduction to sh algebras for physicists. Int. J. Theor. Phys. 32, 1087-1104 (1993) · Zbl 0824.17024 · doi:10.1007/BF00671791
[20] Loday, J.-L., Vallette, B.: Algebraic operads. Preprint version available at http://math.unice.fr/ brunov/Operads.pdf · Zbl 1260.18001
[21] Lawrence, R., Sullivan, D.: A free diferential Lie algebra for the interval. Preprint arXiv:math/0610949 · Zbl 1246.17025
[22] Majewski, M.: Rational homotopy models and uniqueness. Mem. Amer. Math. Soc. 682 (2000) · Zbl 0942.55015
[23] Merkulov S.A.: Strong homotopy algebras of a Kähler manifold. Int. Math. Res. Not. 1999(3), 153-164 (1999) · Zbl 0995.32013 · doi:10.1155/S1073792899000070
[24] Parent, P.-E., Tanré, D.: Lawrence-Sullivan models for the interval. Preprint arXiv:1007.1117 · Zbl 1229.55005
[25] Quillen D.G.: Rational homotopy theory. Ann. Math. (2) 90, 205-295 (1969) · Zbl 0191.53702 · doi:10.2307/1970725
[26] Schlessinger M., Stasheff J.: The Lie algebra structure of tangent cohomology and deformation theory. J. Pure Appl. Algebra 38(2-3), 313-322 (1985) · Zbl 0576.17008 · doi:10.1016/0022-4049(85)90019-2
[27] Tanré, D.: Homotopie rationnelle: modèles de Chen, Quillen, Sullivan. Lecture Notes in Mathematics, vol. 1025. Springer, Berlin (1983) · Zbl 0539.55001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.