×

Refined asymptotics of the spectral gap for the Mathieu operator. (English) Zbl 1256.34078

The paper is concerned with the eigenvalue problem for the Mathieu operator \(L(y)=-y''+2a\cos(2x)y\), \(a\in\mathbb{C}\), \(a\not=0\), with periodic or anti-periodic boundary conditions. The authors extend the result of Harrell-Avron-Simon and obtain the following estimate for the size of the spectral gap for the Mathieu operator \[ \lambda_n^+-\lambda_n^-=\pm\displaystyle\frac{8(a/4)^n}{[(n-1)!]^2}\left[1-\displaystyle\frac{a^2}{4n^3}+O\left(\displaystyle\frac{1}{n^4}\right)\right],\;,n\to\infty. \]

MSC:

34L20 Asymptotic distribution of eigenvalues, asymptotic theory of eigenfunctions for ordinary differential operators
34B08 Parameter dependent boundary value problems for ordinary differential equations
34L40 Particular ordinary differential operators (Dirac, one-dimensional Schrödinger, etc.)

References:

[1] Eastham, M. S.P., The Spectral Theory of Periodic Differential Operators (1974), Hafner: Hafner New York · Zbl 0304.35027
[2] Magnus, W.; Winkler, S., Hill’s Equation (1969), Interscience Publishers, John Wiley · Zbl 0158.09604
[3] Marchenko, V. A., (Sturm-Liouville Operators and Applications. Sturm-Liouville Operators and Applications, Oper. Theory Adv. Appl., vol. 22 (1986), Birkhäuser) · Zbl 1298.34001
[4] Hochstadt, H., Estimates on the stability intervals for the Hill’s equation, Proc. Amer. Math. Soc., 14, 930-932 (1963) · Zbl 0122.09202
[5] Hochstadt, H., On the determination of a Hill’s equation from its spectrum, Arch. Rational Mech. Anal., 19, 353-362 (1965) · Zbl 0128.31201
[6] Marchenko, V. A.; Ostrovskii, I. V., Characterization of the spectrum of Hill’s operator, Mat. Sb., 97, 540-606 (1975), (English transl. in Math. USSR-Sb. 26 (175)) · Zbl 0327.34021
[7] McKean, H.; Trubowitz, E., Hill’s operator and hyperelliptic function theory in the presence of infinitely many branch points, Comm. Pure Appl. Math., 29, 143-226 (1976) · Zbl 0339.34024
[8] Trubowitz, E., The inverse problem for periodic potentials, CPAM, 30, 321-342 (1977) · Zbl 0403.34022
[9] Tkachenko, V., Spectral analysis of the nonselfadjoint Hill operator, Dokl. Akad. Nauk SSSR, 322, 248-252 (1992), (In Russian); Translation in Soviet Math. Dokl. 45 (1992) 78-82 · Zbl 0791.34061
[10] Tkachenko, V., Discriminants and generic spectra of nonselfadjoint Hill’s operators, Spectral operator theory and related topics, 41-71, (Adv. Soviet Math., vol. 19 (1994), Amer. Math. Soc: Amer. Math. Soc Providence, RI) · Zbl 0815.34018
[11] Sansuc, J. J.; Tkachenko, V., Spectral parametrization of non-selfadjoint Hill’s operators, J. Differential Equations, 125, 366-384 (1996) · Zbl 0844.34088
[12] Djakov, P.; Mityagin, B., Smoothness of Schrödinger operator potential in the case of Gevrey type asymptotics of the gaps, J. Funct. Anal., 195, 89-128 (2002) · Zbl 1037.34080
[13] Djakov, P.; Mityagin, B., Spectral triangles of Schrödinger operators with complex potentials, Selecta Math. (N.S.), 9, 495-528 (2003) · Zbl 1088.34072
[14] Djakov, P.; Mityagin, B., Instability zones of periodic 1D Schrödinger and Dirac operators, Uspehi Mat. Nauk, 61, 4, 77-182 (2006), (In Russian). English: Russian Math. Surveys 61 (4) (2006) 663-766 · Zbl 1128.47041
[15] Djakov, P.; Mityagin, B., Spectral gaps of Schrödinger operators with periodic singular potentials, Dyn. Partial Differ. Equ., 6, 2, 95-165 (2009) · Zbl 1238.34151
[16] Ince, E. L., A proof of the impossibility of the coexistence of two Mathieu functions, Proc. Camb. Phil. Soc., 21, 117-120 (1922) · JFM 48.1263.02
[17] Hille, E., On the zeros of Mathieu functions, Proc. London Math. Soc., 23, 185-237 (1923) · JFM 50.0645.03
[18] Markovic, Z., On the impossibility of simultaneous existence of two Mathieu functions, Proc. Cambridge Philos. Soc., 23, 203-205 (1926) · JFM 52.0463.03
[19] McLachlen, N. W., Theory and Applications of Mathieu Functions (1947), Oxford Univ. Press · Zbl 0029.02901
[20] S. Winkler, W. Magnus, The coexistence problem for Hill’s equation, Research Report No. BR - 26, New York University, Institute of Mathematical Sciences, Division of Electromagnetic Research, July 1958, pp. 1-91.; S. Winkler, W. Magnus, The coexistence problem for Hill’s equation, Research Report No. BR - 26, New York University, Institute of Mathematical Sciences, Division of Electromagnetic Research, July 1958, pp. 1-91.
[21] Levy, D. M.; Keller, J. B., Instability Intervals of Hill’s Equation, Comm. Pure Appl. Math., 16, 469-476 (1963) · Zbl 0121.31202
[22] Harrell, E., On the effect of the boundary conditions on the eigenvalues of ordinary differential equations, Amer. J. Math., suppl. (1981), (dedicated to P. Hartman, Baltimore, John Hopkins Press) · Zbl 0544.34014
[23] Avron, J.; Simon, B., The asymptotics of the gap in the Mathieu equation, Ann. Phys., 134, 76-84 (1981) · Zbl 0464.34020
[24] Hochstadt, H., On the width of the instability intervals of the Mathieu equations, SIAM J. Math. Anal., 15, 105-107 (1984) · Zbl 0532.34019
[25] Grigis, A., Estimations asymptotiques des intervalles d’instabilité pour l’équation de Hill, Ann. Sci. École Norm. Sup., 20, 4, 641-672 (1987) · Zbl 0644.34021
[26] Djakov, P.; Mityagin, B., Asymptotics of spectral gaps of a Schrödinger operator with a two terms potential, C. R. Math. Acad. Sci. Paris, 339, 5, 351-354 (2004) · Zbl 1063.34081
[27] Djakov, P.; Mityagin, B., Asymptotics of instability zones of the Hill operator with a two term potential, J. Funct. Anal., 242, 1, 157-194 (2007) · Zbl 1115.34079
[28] Djakov, P.; Mityagin, B., Convergence of spectral decompositions of Hill operators with trigonometric polynomials as potentials, Dokl. Akad. Nauk, 436, 1, 11-13 (2011), (Russian). (Translation in Dokl. Math. 83 (1) (2011) 5-7) · Zbl 1242.34148
[29] Djakov, P.; Mityagin, B., Convergence of spectral decompositions of Hill operators with trigonometric polynomial potentials, Math. Ann., 351, 509-540 (2011) · Zbl 1367.47050
[30] Veliev, O., Isospectral Mathieu-Hill Operators · Zbl 1280.34087
[31] Kiraç, A. A., On the Instability Intervals of the Mathieu-Hill Operator, Lett. Math. Phys., 83, 149-161 (2008) · Zbl 1173.47028
[32] De Bruijn, N. G., Asymptotic Methods in Analysis (1981), Dover Publ: Dover Publ new York · Zbl 0556.41021
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.