×

On a diffuse interface model for two-phase flows of viscous, incompressible fluids with matched densities. (English) Zbl 1254.76158

Summary: We study a diffuse interface model for the flow of two viscous incompressible Newtonian fluids of the same density in a bounded domain. The fluids are assumed to be macroscopically immiscible, but a partial mixing in a small interfacial region is assumed in the model. Moreover, diffusion of both components is taken into account. This leads to a coupled Navier-Stokes/Cahn-Hilliard system, which is capable of describing the evolution of droplet formation and collision during the flow. We prove the existence of weak solutions of the non-stationary system in two and three space dimensions for a class of physical relevant and singular-free energy densities, which ensures – in contrast to the usual case of a smooth free energy density – that the concentration stays in the physical reasonable interval. Furthermore, we find that unique “strong” solutions exist in two dimensions globally in time and in three dimensions locally in time. Moreover, we show that for any weak solution the concentration is uniformly continuous in space and time. Because of this regularity, we are able to show that any weak solution becomes regular for large times and converges as \(t \rightarrow \infty \) to a solution of the stationary system. These results are based on a regularity theory for the Cahn-Hilliard equation with convection and singular potentials in spaces of fractional time regularity as well as on maximal regularity of a Stokes system with variable viscosity and forces in \(L ^{2}(0, \infty ; H ^{s }(\Omega ))\), \({s \in [0, \frac12)}\), which are new themselves.

MSC:

76T99 Multiphase and multicomponent flows
35Q30 Navier-Stokes equations

References:

[1] Abels, H.: Diffuse interface models for two-phase flows of viscous incompressible fluids. Lecture Notes, Max Planck Institute for Mathematics in the Sciences, No. 36/2007, 2007 · Zbl 1124.35060
[2] Abels H.: On generalized solutions of two-phase flows for viscous incompressible fluids. Interf. Free Bound. 9, 31-65 (2007) · Zbl 1124.35060 · doi:10.4171/IFB/155
[3] Abels H.: On the notion of generalized solutions of two-phase flows for viscous incompressible fluids. RIMS Kôkyûroku Bessatsu B1, 1-15 (2007) · Zbl 1119.35042
[4] Abels H., Feireisl E.: On a diffuse interface model for a two-phase flow of compressible viscous fluids. Indiana Univ. Math. J. 57(2), 659-698 (2008) · Zbl 1144.35041 · doi:10.1512/iumj.2008.57.3391
[5] Abels H., Wilke M.: Convergence to equilibrium for the Cahn-Hilliard equation with a logarithmic free energy. Nonlinear Anal. 67(11), 3176-3193 (2007) · Zbl 1121.35018 · doi:10.1016/j.na.2006.10.002
[6] Amann H.: Linear and Quasilinear Parabolic Problems, Vol. 1: Abstract Linear Theory. Birkhäuser, Basel (1995) · Zbl 0819.35001 · doi:10.1007/978-3-0348-9221-6
[7] Anderson, D.M., McFadden, G.B., Wheeler, A.A.: Diffuse-interface methods in fluid mechanics. Annual review of fluid mechanics, Vol. 30, volume 30 of Annu. Rev. Fluid Mech. Annual Reviews, Palo Alto, 139-165, 1998 · Zbl 1398.76051
[8] Bergh J., Löfström J.: Interpolation Spaces. Springer, Berlin (1976) · Zbl 0344.46071 · doi:10.1007/978-3-642-66451-9
[9] Bothe D., Prüss J.: LP-theory for a class of non-Newtonian fluids. SIAM J. Math. Anal. 39(2), 379-421 (2007) (electronic) · Zbl 1172.35052 · doi:10.1137/060663635
[10] Boyer F.: Mathematical study of multi-phase flow under shear through order parameter formulation. Asymptot. Anal. 20(2), 175-212 (1999) · Zbl 0937.35123
[11] Brézis H.: Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert. North-Holland Mathematics Studies, No. 5. Notas de Matemática (50). North-Holland, Amsterdam (1973) · Zbl 0252.47055
[12] Cahn J.W., Hilliard J.E.: Free energy of a nonuniform system. I. Interfacial energy. J. Chem. Phys. 28(2), 258-267 (1958) · Zbl 1431.35066 · doi:10.1063/1.1744102
[13] Denk R., Hieber M., Prüss J. \[{\mathcal{R}} \] -boundedness, Fourier multipliers and problems of elliptic and parabolic type. Mem. Am. Math. Soc. 166(788), viii+114 (2003) · Zbl 1274.35002
[14] Elliott, C.M., Luckhaus, S.: A generalized equation for phase separation of a multi-component mixture with interfacial free energy. Preprint SFB 256 Bonn No. 195, 1991
[15] Engel, K.-J., Nagel, R.: A short course on operator semigroups. Universitext. Springer, New York, 2006 · Zbl 1106.47001
[16] Galdi G.P.: An Introduction to the Mathematical Theory of the Navier-Stokes Equations, Vol. 1. Springer, Berlin (1994) · Zbl 0949.35005
[17] Gurtin M.E., Polignone D., Viñals J.: Two-phase binary fluids and immiscible fluids described by an order parameter. Math. Models Methods Appl. Sci. 6(6), 815-831 (1996) · Zbl 0857.76008 · doi:10.1142/S0218202596000341
[18] Hohenberg P.C., Halperin B.I.: Theory of dynamic critical phenomena. Rev. Mod. Phys. 49, 435-479 (1977) · doi:10.1103/RevModPhys.49.435
[19] Johnsen J.: Pointwise multiplication of Besov and Triebel-Lizorkin spaces. Math. Nachr. 175, 85-133 (1995) · Zbl 0839.46026 · doi:10.1002/mana.19951750107
[20] Lions, J.-L.: Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod, 1969 · Zbl 0189.40603
[21] Liu C., Shen J.: A phase field model for the mixture of two incompressible fluids and its approximation by a Fourier-spectral method. Phys. D 179(3-4), 211-228 (2003) · Zbl 1092.76069 · doi:10.1016/S0167-2789(03)00030-7
[22] Showalter, R.E.: Monotone Operators in Banach Space and Nonlinear Partial Differential Equations, Vol. 49 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, 1997 · Zbl 0870.35004
[23] Simader, C.G., Sohr, H.: A new approach to the Helmholtz decomposition and the Neumann problem in Lq-spaces for bounded and exterior domains. In: Mathematical problems relating to the Navier-Stokes equation, Vol. 11 of Ser. Adv. Math. Appl. Sci., 1-35. World Scientific Publishing, River Edge, 1992 · Zbl 0791.35096
[24] Simon J.: Compact sets in the space Lp(0, T; B). Ann. Mat. Pura Appl. (4) 146, 65-96 (1987) · Zbl 0629.46031 · doi:10.1007/BF01762360
[25] Simon J.: Sobolev Besov, Nikol′skiĭ fractional spaces: imbeddings and comparisons for vector valued spaces on an interval. Ann. Mat. Pura Appl. (4) 157, 117-148 (1990) · Zbl 0727.46018 · doi:10.1007/BF01765315
[26] Sohr, H.: The Navier-Stokes Equations. Birkhäuser Advanced Texts, Basler Lehrbücher. [Birkhäuser Advanced Texts: Basel Textbooks]. Birkhäuser, Basel, 2001. An elementary functional analytic approach · Zbl 0983.35004
[27] Starovoĭtov V.N.: On the motion of a two-component fluid in the presence of capillary forces. Mat. Zametki 62(2), 293-305 (1997) · Zbl 0921.35134 · doi:10.4213/mzm1611
[28] Stein E.M.: Singular Integrals and Differentiability Properties of Functions. Princeton Hall Press, Princeton (1970) · Zbl 0207.13501
[29] Sternberg P., Zumbrun K.: Connectivity of phase boundaries in strictly convex domains. Arch. Rational Mech. Anal. 141(4), 375-400 (1998) · Zbl 0911.49025 · doi:10.1007/s002050050081
[30] Triebel H.: Interpolation Theory, Function Spaces, Differential Operators. North-Holland, Amsterdam (1978) · Zbl 0387.46033
[31] Zeidler, E.: Nonlinear Functional Analysis and its Applications. II/A. Springer, New York, 1990. Linear monotone operators, Translated from the German by the author and Leo F. Boron · Zbl 0684.47029
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.