×

Mean curvature flow in higher codimension: introduction and survey. (English) Zbl 1247.53004

Bär, Christian (ed.) et al., Global differential geometry. Berlin: Springer (ISBN 978-3-642-22841-4/hbk; 978-3-642-22842-1/ebook). Springer Proceedings in Mathematics 17, 231-274 (2012).
This is a useful survey on fundamental results on the mean curvature flow of closed submanifolds with higher codimension in a general Riemannian ambient space.
A detailed introduction is given that makes the survey recommendable for beginners on the subject, with all necessary equations explicitly derived.
Special cases such as codimension one, graphs, and Lagrangian submanifolds are considered throughout the survey. In the last section particular aspects are treated, some of them considered by the author in previous works.
Short-time existence and uniqueness of the mean curvature flow is explained by linearization, with some remarks concerning regularity and the non-compact complete case.
The problem of long-time existence and the formation and classification of singularities is addressed, with some proofs, by applying the parabolic maximum principle. When the ambient space is Euclidean, the rescaling techniques to study the two types of singularities are described, recalling for instance Huisken’s monotonicity formula. Corresponding self-similar shrinking solutions as well as eternal solutions are considered, with some partial classifications, including references to the higher-codimension cases obtained by the author.
In the last section, classes of submanifolds are distinguished by some properties preserved under the mean curvature flow, for instance convexity, graphs, Lagrangian submanifolds and \(\delta\)-pinched second fundamental form. In the latter case, for hypersurfaces and Lagrangian submanifolds, the author derives some rigidity results and classification.
As the author states in section 1, this survey is restricted to the case of Riemannian ambient space, but it could be interesting to consider in the same way the mean curvature flow of space-like submanifolds in a pseudo-Riemannian manifold as well, and to explain the main differences in the two cases.
For the entire collection see [Zbl 1230.53005].

MSC:

53-02 Research exposition (monographs, survey articles) pertaining to differential geometry
53C44 Geometric evolution equations (mean curvature flow, Ricci flow, etc.) (MSC2010)
53C25 Special Riemannian manifolds (Einstein, Sasakian, etc.)
53C20 Global Riemannian geometry, including pinching
53C38 Calibrations and calibrated geometries
53D12 Lagrangian submanifolds; Maslov index
53C24 Rigidity results

References:

[1] Abresch, U.; Langer, J., The normalized curve shortening flow and homothetic solutions, J. Differential Geom., 23, 2, 175-196 (1986) · Zbl 0592.53002
[2] Altschuler, St. J., Singularities of the curve shrinking flow for space curves, J. Differential Geom., 34, 2, 491-514 (1991) · Zbl 0754.53006
[3] Altschuler, St. J.; Grayson, M. A., Shortening space curves and flow through singularities, J. Differential Geom., 35, 2, 283-298 (1992) · Zbl 0782.53001
[4] Ambrosio, L., Soner, H. M., A measure-theoretic approach to higher codimension mean curvature flows, Dedicated to Ennio De Giorgi, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 25, 1997, 1-2, 27-49 (1998), · Zbl 1043.35136
[5] Andrews, B.; Baker, C., Mean curvature flow of pinched submanifolds to spheres, J. Differential Geom., 85, 357-395 (2010) · Zbl 1241.53054
[6] Anciaux, H., Construction of Lagrangian self-similar solutions to the mean curvature flow in ℂ^n, Geom. Dedicata, 120, 37-48 (2006) · Zbl 1098.35074 · doi:10.1007/s10711-006-9082-z
[7] Angenent, S., On the formation of singularities in the curve shortening flow, J. Differential Geom., 33, 3, 601-633 (1991) · Zbl 0731.53002
[8] Angenent, SB; Velázquez, JJL, Degenerate neckpinches in mean curvature flow, J. Reine Angew. Math., 482, 15-66 (1997) · Zbl 0866.58055
[9] Behrndt, T., Generalized Lagrangian mean curvature flow in Kähler manifolds that are almost Einstein, arXiv:0812.4256, to appear in Proceedings of CDG 2009, Leibniz Universität Hannover, 2008, · Zbl 1243.53106
[10] Brakke, K. A., The motion of a surface by its mean curvature, Mathematical Notes, 20, Princeton University Press, Princeton, N.J., 1978, i+252, 0-691-08204-9, · Zbl 0386.53047
[11] Castro, I.; Lerma, A. M., Hamiltonian stationary self-similar solutions for Lagrangian mean curvature flow in the complex Euclidean plane, Proc. Amer. Math. Soc., 138, 1821-1832 (2010) · Zbl 1195.53091
[12] Chau, A., Chen, J., He, W., Entire self-similar solutions to Lagrangian Mean curvature flow, arXiv:0905.3869, 2009,
[13] Chau, A., Chen, J., He, W., Lagrangian Mean Curvature flow for entire Lipschitz graphs, arXiv:0902.3300, 2009, · Zbl 1238.53039
[14] Chen, Y.; Giga, Y.; Goto, S., Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations, J. Differential Geom., 33, 749-786 (1991) · Zbl 0696.35087
[15] Chen, X.; Jian, H.; Liu, Q., Convexity and symmetry of translating solitons in mean curvature flows, Chinese Ann. Math. Ser. B, 26, 413-422 (2005) · Zbl 1236.53054
[16] Chen, J.; Li, J., Mean curvature flow of surface in 4-manifolds, Adv. Math., 163, 2, 287-309 (2001) · Zbl 1002.53046
[17] Chen, J.; Li, J., Singularity of mean curvature flow of Lagrangian submanifolds, Invent. Math., 156, 1, 25-51 (2004) · Zbl 1059.53052
[18] Chen, J.; Li, J.; Tian, G., Two-dimensional graphs moving by mean curvature flow, Acta Math. Sin. (Engl. Ser.), 18, 2, 209-224 (2002) · Zbl 1028.53069
[19] Chen, D.; Ma, L., Curve shortening in a Riemannian manifold, Ann. Mat. Pura Appl. (4), 186, 663-684 (2007) · Zbl 1175.53075
[20] Chen, J., Pang, C., Uniqueness of unbounded solutions of the Lagrangian mean curvature flow equation for graphs, English, with English and French summaries, C. R. Math. Acad. Sci. Paris, 347, 2009, 17-18, 1031-1034, · Zbl 1178.35106
[21] Chen, B.-L.; Yin, L., Uniqueness and pseudolocality theorems of the mean curvature flow, Comm. Anal. Geom., 15, 435-490 (2007) · Zbl 1138.53055
[22] Chou, K.-S., Zhu, X.-P., The curve shortening problem, Chapman & Hall/CRC, Boca Raton, FL, 2001, x+255, 1-58488-213-1, · Zbl 1061.53045
[23] Clutterbuck, J.; Schnürer, O. C.; Schulze, F., Stability of translating solutions to mean curvature flow, Calc. Var. Partial Differential Equations, 29, 281-293 (2007) · Zbl 1120.53041
[24] Colding, TH; Minicozzi, WP II, Sharp estimates for mean curvature flow of graphs, J. Reine Angew. Math., 574, 187-195 (2004) · Zbl 1057.53050 · doi:10.1515/crll.2004.069
[25] Colding, T. H., Minicozzi, W. P., II, Generic mean curvature flow I; generic singularities, arXiv:0908.3788, 2009, · Zbl 1239.53084
[26] Ecker, K., Estimates for evolutionary surfaces of prescribed mean curvature, Math. Z., 180, 1982, 2, 179-192, · Zbl 0469.35053
[27] Ecker, K., A local monotonicity formula for mean curvature flow, Ann. of Math. (2), 154, 2, 503-525 (2001) · Zbl 1007.53050
[28] Ecker, K., Regularity theory for mean curvature flow, Progress in Nonlinear Differential Equations and their Applications, 57, Birkhäuser Boston Inc., Boston, MA, 2004, xiv+165, 0-8176-3243-3, · Zbl 1058.53054
[29] Ecker, K.; Huisken, G., Mean curvature evolution of entire graphs, Ann. of Math. (2), 130, 3, 453-471 (1989) · Zbl 0696.53036
[30] Ecker, K.; Huisken, G., Interior estimates for hypersurfaces moving by mean curvature, Invent. Math., 105, 3, 547-569 (1991) · Zbl 0707.53008
[31] Ecker, K.; Knopf, D.; Ni, L.; Topping, P., Local monotonicity and mean value formulas for evolving Riemannian manifolds, J. Reine Angew. Math., 616, 89-130 (2008) · Zbl 1170.35050 · doi:10.1515/CRELLE.2008.019
[32] Enders, J., Müller, R., Topping, P., On Type I Singularities in Ricci flow, arXiv:1005.1624, 2010, · Zbl 1244.53074
[33] Evans, L. C.; Spruck, J., Motion of level sets by mean curvature, I, J. Differential Geom., 33, 635-681 (1991) · Zbl 0726.53029
[34] Gage, M. E., Curve shortening makes convex curves circular, Invent. Math., 76, 2, 357-364 (1984) · Zbl 0542.53004
[35] Gage, M.; Hamilton, R. S., The heat equation shrinking convex plane curves, J. Differential Geom., 23, 1, 69-96 (1986) · Zbl 0621.53001
[36] Gerhardt, C., Evolutionary surfaces of prescribed mean curvature, J. Differential Equations, 36, 139-172 (1980) · Zbl 0485.35053
[37] Grayson, M. A., The heat equation shrinks embedded plane curves to round points, J. Differential Geom., 26, 2, 285-314 (1987) · Zbl 0667.53001
[38] Grayson, M. A., Shortening embedded curves, Ann. of Math. (2), 129, 1989, 1, 71-111, · Zbl 0686.53036
[39] Groh, K.; Schwarz, M.; Smoczyk, K.; Zehmisch, K., Mean curvature flow of monotone Lagrangian submanifolds, Math. Z., 257, 2, 295-327 (2007) · Zbl 1144.53084
[40] Gromov, M., Pseudoholomorphic curves in symplectic manifolds, Invent. Math., 82, 1985, 2, 307-347, · Zbl 0592.53025
[41] Hamilton, R. S., The inverse function theorem of Nash and Moser, Bull. Amer. Math. Soc. (N.S.), 7, 1982, 1, 65-222, · Zbl 0499.58003
[42] Hamilton, R. S., Three-manifolds with positive Ricci curvature, J. Differential Geom., 17, 2, 255-306 (1982) · Zbl 0504.53034
[43] Hamilton, R. S., Four-manifolds with positive curvature operator, J. Differential Geom., 24, 2, 153-179 (1986) · Zbl 0628.53042
[44] Hamilton, R. S., Monotonicity formulas for parabolic flows on manifolds, Comm. Anal. Geom., 1, 127-137 (1993) · Zbl 0779.58037
[45] Hamilton, RS, The formation of singularities in the Ricci flow, Surveys in differential geometry, II, Cambridge, MA, 1993, Int. Press, Cambridge, MA, 7-136 (1995) · Zbl 0867.53030
[46] Hamilton, R. S., Harnack estimate for the mean curvature flow, J. Differential Geom., 41, 1, 215-226 (1995) · Zbl 0827.53006
[47] Han, X.; Li, J., Translating solitons to symplectic and Lagrangian mean curvature flows, Internat. J. Math., 20, 443-458 (2009) · Zbl 1171.53330
[48] Huisken, G., Flow by mean curvature of convex surfaces into spheres, J. Differential Geom., 20, 1, 237-266 (1984) · Zbl 0556.53001
[49] Huisken, G., Contracting convex hypersurfaces in Riemannian manifolds by their mean curvature, Invent. Math., 84, 463-480 (1986) · Zbl 0589.53058
[50] Huisken, G., Asymptotic behavior for singularities of the mean curvature flow, J. Differential Geom., 31, 1, 285-299 (1990) · Zbl 0694.53005
[51] Huisken, G., Local and global behaviour of hypersurfaces moving by mean curvature, Differential geometry: partial differential equations on manifolds (Los Angeles, CA, 1990),, Proc. Sympos. Pure Math., 54, Amer. Math. Soc., Providence, RI,, 1993, 175-191, · Zbl 0791.58090
[52] Huisken, G.; Sinestrari, C., Mean curvature flow singularities for mean convex surfaces, Calc. Var. Partial Differential Equations, 8, 1, 1-14 (1999) · Zbl 0992.53052
[53] Huisken, G.; Sinestrari, C., Convexity estimates for mean curvature flow and singularities of mean convex surfaces, Acta Math., 183, 1, 45-70 (1999) · Zbl 0992.53051
[54] Huisken, G.; Sinestrari, C., Mean curvature flow with surgeries of two-convex hypersurfaces, Invent. Math., 175, 1, 137-221 (2009) · Zbl 1170.53042
[55] Ilmanen, T., Generalized flow of sets by mean curvature on a manifold, Indiana Univ. Math. J., 41, 3, 671-705 (1992) · Zbl 0759.53035
[56] Joyce, D.; Lee, Y.-I.; Tsui, M.-P., Self-similar solutions and translating solitons for Lagrangian mean curvature flow, J. Differential Geom., 84, 127-161 (2010) · Zbl 1206.53071
[57] Krylov, N. V., Nonlinear elliptic and parabolic equations of the second order, Mathematics and its Applications (Soviet Series), 7, D. Reidel Publishing Co., Dordrecht, 1987, xiv+462, 90-277-2289-7, · Zbl 0619.35004
[58] Le, N. Q.; Sesum, N., The mean curvature at the first singular time of the mean curvature flow, Ann. Inst. H. Poincaré Anal. Non Linéaire, 27, 1441-1459 (2010) · Zbl 1237.53067
[59] Le, N. Q., Sesum, N., Blow-up rate of the mean curvature during the mean curvature flow and a gap theorem for self-shrinkers, arXiv:1011.5245v1, 2010, · Zbl 1244.53078
[60] Li, J., Li, Y., Mean curvature flow of graphs in Σ_1 ×Σ_2, J. Partial Differential Equations, 16, 2003, 3, 255-265, · Zbl 1038.53065
[61] Liu, K., Xu, H., Ye, F., Zhao, E., The extension and convergence of mean curvature flow in higher codimension, arXiv:1104.0971v1, 2011,
[62] Medos, I., Wang (2009), Deforming symplectomorphisms of complex projective spaces by the mean curvature flow, Preprint: M.-T, Deforming symplectomorphisms of complex projective spaces by the mean curvature flow, Preprint
[63] Mullins, WW, Two-dimensional motion of idealized grain boundaries, J. Appl. Phys., 27, 900-904 (1956) · doi:10.1063/1.1722511
[64] Neves, A., Singularities of Lagrangian mean curvature flow: zero-Maslov class case, Invent. Math., 168, 449-484 (2007) · Zbl 1119.53052
[65] Neves, A., Singularities of Lagrangian mean curvature flow: monotone case, Math. Res. Lett., 17, 1, 109-126 (2010) · Zbl 1237.53068
[66] Perelman, G., The entropy formula for the Ricci flow and its geometric applications, arXiv:math/0211159, 2002, · Zbl 1130.53001
[67] Perelman, G., Ricci flow with surgery on three-manifolds, arXiv:math/0303109, 2003, · Zbl 1130.53002
[68] Perelman, G., Finite extinction time for the solutions to the Ricci flow on certain three-manifolds, arXiv:math/0307245, 2003, · Zbl 1130.53003
[69] Ros, A.; Urbano, F., Lagrangian submanifolds of C n with conformal Maslov form and the Whitney sphere, J. Math. Soc. Japan, 50, 1, 203-226 (1998) · Zbl 0906.53037
[70] Schoen, R.; Wolfson, J., Minimizing area among Lagrangian surfaces: the mapping problem, J. Differential Geom., 58, 1, 1-86 (2001) · Zbl 1052.53056
[71] Schoen, R., Wolfson (2003), Mean curvature flow and Lagrangian embeddings, Preprint: J, Mean curvature flow and Lagrangian embeddings, Preprint
[72] Smoczyk, K., A canonical way to deform a Lagrangian submanifold, arXiv:dg-ga/9605005, 1996,
[73] Smoczyk, K., Harnack inequality for the Lagrangian mean curvature flow, Calc. Var. Partial Differential Equations, 8, 1999, 3, 247-258, · Zbl 0973.53066
[74] Smoczyk, K., The Lagrangian mean curvature flow (Der Lagrangesche mittlere Krümmungsfluß, Leipzig: Univ. Leipzig (Habil.), 102 S., 2000, · Zbl 0978.53124
[75] Smoczyk, K., Angle theorems for the Lagrangian mean curvature flow, Math. Z., 240, 2002, 4, 849-883, · Zbl 1020.53045
[76] Smoczyk, K., Longtime existence of the Lagrangian mean curvature flow, Calc. Var. Partial Differential Equations, 20, 2004, 1, 25-46, · Zbl 1082.53071
[77] Smoczyk, K., Self-shrinkers of the mean curvature flow in arbitrary codimension, Int. Math. Res. Not., 48, 2983-3004 (2005) · Zbl 1085.53059 · doi:10.1155/IMRN.2005.2983
[78] Smoczyk, K.; Wang, M.-T., Mean curvature flows of Lagrangians submanifolds with convex potentials, J. Differential Geom., 62, 2, 243-257 (2002) · Zbl 1070.53042
[79] Smoczyk, K.; Wang, M.-T., Generalized Lagrangian mean curvature flows in symplectic manifolds, Asian J. Math., 15, 1, 129-140 (2011) · Zbl 1232.53055
[80] Stavrou, N., Selfsimilar solutions to the mean curvature flow, J. Reine Angew. Math., 499, 189-198 (1998) · Zbl 0895.53039 · doi:10.1515/crll.1998.057
[81] Stone, A., A density function and the structure of singularities of the mean curvature flow, Calc. Var. Partial Differential Equations, 2, 443-480 (1994) · Zbl 0833.35062
[82] Temam, R., Applications de l’analyse convexe au calcul des variations, French, Nonlinear operators and the calculus of variations (Summer School, Univ. Libre Bruxelles, Brussels, 1975),, Springer, Berlin,, 1976, 208-237. Lecture Notes in Math., Vol. 543, · Zbl 0337.49022
[83] Thomas, R. P.; Yau, S.-T., Special Lagrangians, stable bundles and mean curvature flow, Comm. Anal. Geom., 10, 1075-1113 (2002) · Zbl 1115.53054
[84] Tsui, M.-P.; Wang, M.-T., Mean curvature flows and isotopy of maps between spheres, Comm. Pure Appl. Math., 57, 1110-1126 (2004) · Zbl 1067.53056
[85] Wang, M.-T., Mean curvature flow of surfaces in Einstein four-manifolds, J. Differential Geom., 57, 2, 301-338 (2001) · Zbl 1035.53094
[86] Wang, M.-T., Deforming area preserving diffeomorphism of surfaces by mean curvature flow, Math. Res. Lett., 8, 5-6, 651-661 (2001) · Zbl 1081.53056
[87] Wang, M.-T., Long time existence and convergence of graphic mean curvature flow in arbitrary codimension, Invent. Math., 148, 525-543 (2002) · Zbl 1039.53072
[88] Wang, M.-T., Gauss maps of the mean curvature flow, Math. Res. Lett., 10, 2-3, 287-299 (2003) · Zbl 1068.53047
[89] Wang, M.-T., The mean curvature flow smoothes Lipschitz submanifolds, Comm. Anal. Geom., 12, 581-599 (2004) · Zbl 1059.53053
[90] Wang, M.-T., Subsets of Grassmannians preserved by mean curvature flows, Comm. Anal. Geom., 13, 981-998 (2005) · Zbl 1111.53052
[91] Wang, M.-T., A convergence result of the Lagrangian mean curvature flow, Third International Congress of Chinese Mathematicians. Part 1, 2,, AMS/IP Stud. Adv. Math., 42, pt. 1, 2, Amer. Math. Soc., Providence, RI,, 2008, 291-295, · Zbl 1170.53046
[92] Wang, M.-T., Lectures on mean curvature flows in higher codimensions, Handbook of geometric analysis. No. 1,, Adv. Lect. Math. (ALM), 7, Int. Press, Somerville, MA,, 2008, 525-543, · Zbl 1167.53058
[93] White, B., A local regularity theorem for mean curvature flow, Ann. of Math. (2), 161, 1487-1519 (2005) · Zbl 1091.53045
[94] White, B., Currents and flat chains associated to varifolds, with an application to mean curvature flow, Duke Math. J., 148, 1, 41-62 (2009) · Zbl 1161.49043
[95] Xin, Y., Mean curvature flow with convex Gauss image, Chin, Ann. Math. Ser. B, 29, 2, 121-134 (2008) · Zbl 1309.53053
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.