×

On stability of difference schemes. Central schemes for hyperbolic conservation laws with source terms. (English) Zbl 1243.65108

Summary: The stability of nonlinear explicit difference schemes with not, in general, open domains of the scheme operators are studied. For the case of path-connected, bounded, and Lipschitz domains, we establish the notion that a multi-level nonlinear explicit scheme is stable iff the corresponding scheme in variations is stable. A new modification of the central Lax-Friedrichs scheme is developed to be of the second-order accuracy. The modified scheme is based on nonstaggered grids. A monotone piecewise cubic interpolation is used in the central scheme to give an accurate approximation for the model in question. The stability of the modified scheme is investigated. Some versions of the modified scheme are tested on several conservation laws, and the scheme is found to be accurate and robust. As applied to hyperbolic conservation laws with, in general, stiff source terms, it is constructed a second-order nonstaggered central scheme based on operator-splitting techniques.

MSC:

65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
35L65 Hyperbolic conservation laws

Software:

pchip; UNCMND

References:

[1] Ahmad, I.; Berzins, M., MOL solvers for hyperbolic PDEs with source terms, Math. Comput. Simulation, 56, 115-125 (2001) · Zbl 0986.65084
[2] Anderson, D. A.; Tannehill, J. C.; Pletcher, R. H., Computational Fluid Mechanics and Heat Transfer (1984), Hemisphere Publishing Corporation: Hemisphere Publishing Corporation New York · Zbl 0569.76001
[3] Anisimov, S. I.; Bäuerle, D.; Lukʼyanchuk, B. S., Gas dynamics and film profiles in pulsed-laser deposition of materials, Phys. Rev. B, 48, 16, 12076-12081 (1993)
[4] Aves, Mark A.; Griffiths, David F.; Higham, Desmond J., Runge-Kutta solutions of a hyperbolic conservation law with source term, SIAM J. Sci. Comput., 22, 1, 20-38 (2000) · Zbl 0966.65063
[5] Balaguer, Angel; Conde, Carlos, Fourth-order non-oscillatory upwind and central schemes for hyperbolic conservation laws, SIAM J. Numer. Anal., 43, 2, 455-473 (2005) · Zbl 1094.65078
[6] Bereux, François; Sainsaulieu, Lionel, A roe-type Riemann solver for hyperbolic systems with relaxation based on time-dependent wave decomposition, Numer. Math., 77, 143-185 (1997) · Zbl 0873.35047
[7] Borisov, V. S.; Mond, M., On stability, monotonicity, and construction of difference schemes I: Theory, SIAM J. Sci. Comput., 32, 2765-2792 (2010) · Zbl 1218.65097
[8] Borisov, V. S.; Mond, M., On stability, monotonicity, and construction of difference schemes II: Applications, SIAM J. Sci. Comput., 32, 2793-2819 (2010) · Zbl 1218.65098
[9] Borisov, V. S.; Sorek, S., On monotonicity of difference schemes for computational physics, SIAM J. Sci. Comput., 25, 5, 1557-1584 (2004) · Zbl 1133.35327
[10] Borisov, V. S., On discrete maximum principles for linear equation systems and monotonicity of difference schemes, SIAM J. Matrix Anal. Appl., 24, 4, 1110-1135 (2003) · Zbl 1042.65078
[11] Burenkov, Victor I., Sobolev Spaces on Domains (1998), B.G. Teubner: B.G. Teubner Leipzig · Zbl 0893.46024
[12] Caflisch, Russel E.; Jin, Shi; Russo, Giovanni, Uniformly accurate schemes for hyperbolic systems with relaxation, SIAM J. Numer. Anal., 34, 1, 246-281 (1997) · Zbl 0868.35070
[13] Du, Tao; Shi, Jing; Wu, Zi-Niu, Mixed analytical/numerical method for flow equations with a source term, Comput. & Fluids, 32, 659-690 (2003) · Zbl 1048.76044
[14] Fritsch, F. N.; Carlson, R. E., Monotone piecewise cubic interpolation, SIAM J. Numer. Anal., 17, 2, 238-246 (1980) · Zbl 0423.65011
[15] Ganzha, V. G.; Vorozhtsov, E. V., Numerical Solutions for Partial Differential Equations (1996), CRC Press: CRC Press New York · Zbl 0861.65069
[16] Ganzha, V. G.; Vorozhtsov, E. V., Computer-Aided Analysis of Difference Schemes for Partial Differential Equations (1996), John Wiley & Sons: John Wiley & Sons New York · Zbl 0861.65069
[17] Gilʼ, M. I., Difference Equations in Normed Spaces, Stability and Oscillations (2007), Elsevier: Elsevier Amsterdam · Zbl 1127.39014
[18] Godlewski, Edwige; Raviart, Pierre-Arnaud, Numerical Approximation of Hyperbolic Systems of Conservation Laws (1996), Springer-Verlag: Springer-Verlag New York · Zbl 0860.65075
[19] Gosse, L., A well-balanced flux-vector splitting scheme designed for hyperbolic systems of conservation laws with source terms, Comput. Math. Appl., 39, 135-159 (2000) · Zbl 0963.65090
[20] Griffiths, David F.; Higham, Desmond J., Numerical Methods for Ordinary Differential Systems: Initial Value Problems, Springer Undergraduate Mathematics Series (2010), Springer-Verlag: Springer-Verlag London · Zbl 1209.65070
[21] Heinonen, Juha, Lectures on Lipschitz analysis, Rep. Univ. Jyväskylä Dept. Math. Stat., 100, 1-77 (2005) · Zbl 1086.30003
[22] Horn, Roger A.; Johnson, Charles R., Topics in Matrix Analysis (1991), Cambridge Univ. Press · Zbl 0729.15001
[23] Jiang, G.-S.; Levy, D.; Lin, C.-T.; Osher, S.; Tadmor, E., High-resolution nonoscillatory central schemes with nonstaggered grids for hyperbolic conservation laws, SIAM J. Numer. Anal., 35, 6, 2147-2168 (Dec. 1998) · Zbl 0920.65053
[24] Jin, Shi, Runge-Kutta methods for hyperbolic conservation laws with stiff relaxation terms, J. Comput. Phys., 122, 51-67 (1995) · Zbl 0840.65098
[25] Jin, Shi; Pareschi, Lorenzo; Toscani, Gioseppe, Uniformly accurate diffusive schemes for multiscale transport equations, SIAM J. Numer. Anal., 38, 3, 913-936 (2000) · Zbl 0976.65091
[26] Kahaner, David; Moler, Cleve; Nash, Stephen, Numerical Methods and Software (1989), Prentice-Hall: Prentice-Hall New Jersey · Zbl 0744.65002
[27] Kocić, L. M.; Milovanović, G. V., Shape preserving approximations by polynomials and splines, Comput. Math. Appl., 33, 11, 59-97 (1997) · Zbl 0911.65006
[28] Kolmogorov, A. N.; Fomin, S. V., Introductory Real Analysis (1970), Prentice-Hall: Prentice-Hall USA · Zbl 0213.07305
[29] Kurganov, Alexander; Tadmor, Eitan, New high-resolution central schemes for nonlinear conservation laws and convection-diffusion equations, J. Comput. Phys., 160, 241-282 (2000) · Zbl 0987.65085
[30] Kurganov, Alexander; Levy, Doron, A third-order semidiscrete central scheme for conservation laws and convection-diffusion equations, SIAM J. Sci. Comput., 22, 4, 1461-1488 (2000) · Zbl 0979.65077
[31] Leoni, Giovanni, A First Course in Sobolev Spaces (2009), American Mathematical Society: American Mathematical Society Providence, RI · Zbl 1180.46001
[32] LeVeque, Randall J., Finite Volume Methods for Hyperbolic Problems (2002), Cambridge University Press: Cambridge University Press Cambridge · Zbl 1010.65040
[33] Liu, Xu-Dong; Tadmor, Eitan, Third order nonoscillatory central scheme for hyperbolic conservation laws, Numer. Math., 79, 397-425 (1998) · Zbl 0906.65093
[34] Monthé, L. A., A study of splitting scheme for hyperbolic conservation laws, J. Comput. Appl. Math., 137, 1-12 (2001) · Zbl 0993.65102
[35] Morton, K. W., Numerical Solution of Convection-Diffusion Problems (1996), Chapman & Hall: Chapman & Hall London · Zbl 0861.65070
[36] Morton, K. W., Discretization of unsteady hyperbolic conservation laws, SIAM J. Numer. Anal., 39, 5, 1556-1597 (2001) · Zbl 1013.65091
[37] Naldi, Giovanni; Pareschi, Lorenzo, Numerical schemes for hyperbolic systems of conservation laws with stiff diffusive relaxation, SIAM J. Numer. Anal., 37, 4, 1246-1270 (2000) · Zbl 0954.35109
[38] Naterer, Greg F.; Camberos, Jose A., Entropy Based Design and Analysis of Fluids Engineering Systems (2008), Taylor and Francis Group: Taylor and Francis Group Boca Raton, USA · Zbl 1155.76003
[39] Nessyahu, Haim; Tadmor, Eitan, Non-oscillatory central differencing for hyperbolic conservation laws, J. Comput. Phys., 87, 2, 408-463 (April 1990) · Zbl 0697.65068
[40] Ortega, J. M.; Rheinboldt, W. C., Iterative Solution of Nonlinear Equations in Several Variables (1970), Academic Press: Academic Press New York, London · Zbl 0241.65046
[41] Pareschi, Lorenzo, Central differencing based numerical schemes for hyperbolic conservation laws with relaxation terms, SIAM J. Numer. Anal., 39, 4, 1395-1417 (2001) · Zbl 1020.65048
[42] Pareschi, Lorenzo; Russo, Giovanni, Implicit-explicit Runge-Kutta schemes and applications to hyperbolic systems with relaxation, J. Sci. Comput., 25, 1-2, 129-155 (November 2005) · Zbl 1203.65111
[43] Pareschi, Lorenzo; Puppo, Gabriella; Russo, Giovanni, Central Runge-Kutta schemes for conservation laws, SIAM J. Sci. Comput., 26, 3, 979-999 (2005) · Zbl 1077.65094
[44] Pember, Richard B., Numerical methods for hyperbolic conservation laws with stiff relaxation I. Spurious solutions, SIAM J. Appl. Math., 53, 5, 1293-1330 (October 1993) · Zbl 0787.65062
[45] Pember, Richard B., Numerical methods for hyperbolic conservation laws with stiff relaxation II. Higher-order Godunov methods, SIAM J. Sci. Comput., 14, 4, 826-859 (July 1993) · Zbl 0812.65083
[46] Press, William H.; Flannery, Brian P.; Teukolsky, Saul A.; Vetterling, William T., Numerical Recipes in C, The Art of Scientific Computing (1988), Cambridge University Press: Cambridge University Press New York · Zbl 0661.65001
[47] Richtmyer, R. D.; Morton, K. W., Difference Methods for Initial-Value Problems (1967), Wiley-Interscience: Wiley-Interscience New York · Zbl 0155.47502
[48] Samarskii, A. A., The Theory of Difference Schemes (2001), Marcel Dekker: Marcel Dekker New York · Zbl 0971.65076
[49] Samarskiy, A. A.; Gulin, A. V., Stability of Finite Difference Schemes (1973), Nauka: Nauka Moscow, (in Russian)
[50] Serna, Susana; Marquina, Antonio, Capturing shock waves in inelastic granular gases, J. Comput. Phys., 209, 787-795 (2004) · Zbl 1138.76378
[51] Strunin, Dmitry, Nonlinear instability in generalized nonlinear phase diffusion equation, Progr. Theoret. Phys. Suppl., 150, 444-448 (2003)
[52] Zhao, Huijiang; Tang, Shaoqiang, Nonlinear stability and optimal decay rate for a multidimensional generalized Kuramoto-Sivashinsky system, J. Math. Anal. Appl., 246, 423-445 (2000) · Zbl 0957.35116
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.