×

On bifurcations in nonlinear consensus networks. (English) Zbl 1242.34089

Summary: We consider three frameworks which define distributed nonlinear dynamics in multi-agent networks. We determined the set of equilibria that could be achieved through these dynamics, and examined their stability. We also described the bifurcation behavior in multi-agent networks using these frameworks, and demonstrate a variety of interesting behaviors that can be achieved.

MSC:

34C60 Qualitative investigation and simulation of ordinary differential equation models
34C23 Bifurcation theory for ordinary differential equations
34D20 Stability of solutions to ordinary differential equations
92B20 Neural networks for/in biological studies, artificial life and related topics
Full Text: DOI

References:

[1] Arcak, M.: Passivity as a design tool for group coordination. IEEE Trans. Autom. Control 52(8), 1380–1390 (2007) · Zbl 1366.93563 · doi:10.1109/TAC.2007.902733
[2] Ashwin, P., Burylko, O., Maistrenko, Y.: Bifurcation to heteroclinic cycles and sensitivity in three and four coupled phase oscillators. Physica D 237(4), 454–466 (2008) · Zbl 1178.34041 · doi:10.1016/j.physd.2007.09.015
[3] Bogacz, R., Brown, E., Moehlis, J., Holmes, P., Cohen, J.D.: The physics of optimal decision making: A formal analysis of performance in two-alternative forced choice tasks. Psychol. Rev. 113(4), 700–765 (2006) · doi:10.1037/0033-295X.113.4.700
[4] Bullo, F., Cortés, J., Martínez, S.: Distributed Control of Robotic Networks. Applied Mathematics Series. Princeton University Press, Princeton (2009). Available at http://www.coordinationbook.info · Zbl 1193.93137
[5] Couzin, I.D., Krause, J., Franks, N.R., Levin, S.A.: Effective leadership and decision-making in animal groups on the move. Nature 433(7025), 513–516 (2005) · doi:10.1038/nature03236
[6] Dionne, B., Golubitsky, M., Stewart, I.: Coupled cells with internal symmetry. Nonlinearity 9, 559–599 (1996) · Zbl 0894.58049 · doi:10.1088/0951-7715/9/2/016
[7] Dörfler, F., Francis, B.: Geometric analysis of the formation problem for autonomous robots. IEEE Trans. Automat. Contol 55(10), 2379–2384 (2010) · Zbl 1368.93421 · doi:10.1109/TAC.2010.2053735
[8] Fax, J.A., Murray, R.M.: Information flow and cooperative control of vehicle formations. IEEE Trans. Autom. Control 49(9), 1465–1476 (2004) · Zbl 1365.90056 · doi:10.1109/TAC.2004.834433
[9] Jadbabaie, A., Lin, J., Morse, A.S.: Coordination of groups of mobile autonomous agents using nearest neighbor rules. IEEE Trans. Autom. Control 48(6), 988–1001 (2003) · Zbl 1364.93514 · doi:10.1109/TAC.2003.812781
[10] Khalil, H.K.: Nonlinear Systems, 3rd edn. Prentice Hall, New York (2002) · Zbl 1003.34002
[11] Kimura, M., Moehlis, J.: Novel vehicular trajectories for collective motion from coupled oscillator steering control. SIAM J. Appl. Dyn. Syst. 7(4), 1191–1212 (2008) · Zbl 1166.70016 · doi:10.1137/070704496
[12] Kwatny, H., Pasrija, A., Bahar, L.: Static bifurcations in electric power networks: Loss of steady-state stability and voltage collapse. IEEE Trans. Circuits Syst. 33(10), 981–991 (1986) · Zbl 0621.94024 · doi:10.1109/TCS.1986.1085856
[13] Lin, J., Morse, A.S., Anderson, B.D.O.: The multi-agent rendezvous problem. Part 1: The synchronous case. SIAM J. Control Optim. 46(6), 2096–2119 (2007) · Zbl 1149.93023 · doi:10.1137/040620552
[14] Lorenz, J.: Continuous opinion dynamics under bounded confidence: A survey. Int. J. Mod. Phys. C 18(12), 1819–1838 (2007) · Zbl 1151.91076 · doi:10.1142/S0129183107011789
[15] Nabet, B., Leonard, N.E., Couzin, I.D., Levin, S.A.: Dynamics of decision making in animal group motion. J. Nonlinear Sci. 19(4), 399–435 (2009) · Zbl 1169.93302 · doi:10.1007/s00332-008-9038-6
[16] Olfati-Saber, R., Fax, J.A., Murray, R.M.: Consensus and cooperation in networked multi-agent systems. Proc. IEEE 95(1), 215–233 (2007) · Zbl 1376.68138 · doi:10.1109/JPROC.2006.887293
[17] Olfati-Saber, R., Murray, R.M.: Consensus problems in networks of agents with switching topology and time-delays. IEEE Trans. Autom. Control 49(9), 1520–1533 (2004) · Zbl 1365.93301 · doi:10.1109/TAC.2004.834113
[18] Olien, L., Bélair, J.: Bifurcations, stability, and monotonicity properties of a delayed neural network model. Physica D 102(3-4), 349–363 (1997) · Zbl 0887.34069 · doi:10.1016/S0167-2789(96)00215-1
[19] Papachristodoulou, A., Jadbabaie, A.: Synchronization in oscillator networks with heterogeneous delays, switching topologies and nonlinear dynamics. In: IEEE Conf. on Decision and Control, San Diego, CA, December 2006, pp. 4307–4312 (2006)
[20] Poulakakis, I., Scardovi, L., Leonard, N.E.: Coupled stochastic differential equations and collective decision making in the Two-Alternative Forced-Choice task. In: American Control Conference, pp. 69–74 (2010)
[21] Roxin, A., Ledberg, A.: Neurobiological models of two-choice decision making can be reduced to a one-dimensional nonlinear diffusion equation. PLoS Comput. Biol. 4(3), e1000046 (2008) · doi:10.1371/journal.pcbi.1000046
[22] Spanos, D.P., Olfati-Saber, R., Murray, R.M.: Approximate distributed Kalman filtering in sensor networks with quantifiable performance. In: Symposium on Information Processing of Sensor Networks, Los Angeles, CA, April 2005, pp. 133–139 (2005)
[23] Srivastava, V., Moehlis, J., Bullo, F.: On bifurcations in nonlinear consensus networks. In: American Control Conference, Baltimore, MD, June 2010, pp. 1647–1652 (2010)
[24] Strogatz, S.H.: Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering. Perseus Books Group, New York City (2000)
[25] Tanner, H.G., Jadbabaie, A., Pappas, G.J.: Flocking in fixed and switching networks. IEEE Trans. Autom. Control 52(5), 863–868 (2007) · Zbl 1366.93414 · doi:10.1109/TAC.2007.895948
[26] Wei, J., Ruan, S.: Stability and bifurcation in a neural network model with two delays. Physica D 130(3-4), 255–272 (1999) · Zbl 1066.34511 · doi:10.1016/S0167-2789(99)00009-3
[27] Zou, F., Nossek, J.A.: Bifurcation and chaos in cellular neural networks. IEEE Trans. Circuits Syst. I, Fundam. Theory Appl. 40(3), 166–173 (1993) · Zbl 0782.92003 · doi:10.1109/81.222797
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.