×

Numerical analysis of a linear-implicit average scheme for generalized Benjamin-Bona-Mahony-Burgers equation. (English) Zbl 1235.76090

Summary: A linear-implicit finite difference scheme is given for the initial-boundary problem of GBBM-Burgers equation, which is convergent and unconditionally stable. The unique solvability of numerical solutions is shown. A priori estimate and second-order convergence of the finite difference approximate solution are discussed using energy method. Numerical results demonstrate that the scheme is efficient and accurate.

MSC:

76M20 Finite difference methods applied to problems in fluid mechanics
65N06 Finite difference methods for boundary value problems involving PDEs
35Q53 KdV equations (Korteweg-de Vries equations)

References:

[1] K. Al-Khaled, S. Momani, and A. Alawneh, “Approximate wave solutions for generalized Benjamin-Bona-Mahony-Burgers equations,” Applied Mathematics and Computation, vol. 171, no. 1, pp. 281-292, 2005. · Zbl 1084.65097 · doi:10.1016/j.amc.2005.01.056
[2] D. H. Peregrine, “Calculations of the development of an undular bore,” The Journal of Fluid Mechanics, vol. 25, pp. 321-330, 1966.
[3] T. B. Benjamin, J. L. Bona, and J. J. Mahony, “Model equations for long waves in nonlinear dispersive systems,” Philosophical Transactions of the Royal Society of London Series A, vol. 272, no. 1220, pp. 47-78, 1972. · Zbl 0229.35013 · doi:10.1098/rsta.1972.0032
[4] K. R. Raslan, “A computational method for the regularized long wave (RLW) equation,” Applied Mathematics and Computation, vol. 167, no. 2, pp. 1101-1118, 2005. · Zbl 1082.65582 · doi:10.1016/j.amc.2004.06.130
[5] D. Bhardwaj and R. Shankar, “A computational method for regularized long wave equation,” Computers & Mathematics with Applications, vol. 40, no. 12, pp. 1397-1404, 2000. · Zbl 0965.65108 · doi:10.1016/S0898-1221(00)00248-0
[6] D. Kaya, “A numerical simulation of solitary-wave solutions of the generalized regularized long-wave equation,” Applied Mathematics and Computation, vol. 149, no. 3, pp. 833-841, 2004. · Zbl 1038.65101 · doi:10.1016/S0096-3003(03)00189-9
[7] S. Abbasbandy, “Homotopy analysis method for generalized Benjamin-Bona-Mahony equation,” ZAMP: Zeitschrift für Angewandte Mathematik und Physik, vol. 59, no. 1, pp. 51-62, 2008. · Zbl 1139.35325 · doi:10.1007/s00033-007-6115-x
[8] N. Hayashi, E. I. Kaikina, and P. I. Naumkin, “Large time asymptotics for the BBM-Burgers equation,” Annales Henri Poincaré, vol. 8, no. 3, pp. 485-511, 2007. · Zbl 1131.35071 · doi:10.1007/s00023-006-0314-4
[9] M.-n. Jiang and Y.-l. Xu, “Asymptotic behavior of solutions to the generalized BBM-Burgers equation,” Acta Mathematicae Applicatae Sinica. English Series, vol. 21, no. 1, pp. 31-42, 2005. · Zbl 1088.35007 · doi:10.1007/s10255-005-0212-4
[10] H. Yin, S. Chen, and J. Jin, “Convergence rate to traveling waves for generalized Benjamin-Bona-Mahony-Burgers equations,” ZAMP: Zeitschrift für Angewandte Mathematik und Physik, vol. 59, no. 6, pp. 969-1001, 2008. · Zbl 1231.35183 · doi:10.1007/s00033-007-6136-5
[11] M. Mei, “Large-time behavior of solution for generalized Benjamin-Bona-Mahony-Burgers equations,” Nonlinear Analysis: Theory, Methods & Applications, vol. 33, no. 7, pp. 699-714, 1998. · Zbl 0936.35163 · doi:10.1016/S0362-546X(97)00674-3
[12] C. I. Kondo and C. M. Webler, “Higher-order for the multidimensional generalized BBM-Burgers equation: existence and convergence results,” Acta Applicandae Mathematicae, vol. 111, no. 1, pp. 45-64, 2010. · Zbl 1194.35259 · doi:10.1007/s10440-009-9531-4
[13] S.-I. Kinami, M. Mei, and S. Omata, “Convergence to diffusion waves of the solutions for Benjamin-Bona-Mahony-Burgers equations,” Applicable Analysis, vol. 75, no. 3-4, pp. 317-340, 2000. · Zbl 1026.35093 · doi:10.1080/00036810008840852
[14] L. Zhang, “A finite difference scheme for generalized regularized long-wave equation,” Applied Mathematics and Computation, vol. 168, no. 2, pp. 962-972, 2005. · Zbl 1080.65079 · doi:10.1016/j.amc.2004.09.027
[15] J. Hu and K. Zheng, “Two conservative difference schemes for the generalized Rosenau equation,” Boundary Value Problems, vol. 2010, Article ID 543503, 18 pages, 2010. · Zbl 1187.65090 · doi:10.1155/2010/543503
[16] Y. L. Zhou, Application of Discrete Functional Analysis to the Finite Difference Method, International Academic Publishers, Beijing, China, 1991. · Zbl 0732.65080
[17] K. Omrani, F. Abidi, T. Achouri, and N. Khiari, “A new conservative finite difference scheme for the Rosenau equation,” Applied Mathematics and Computation, vol. 201, no. 1-2, pp. 35-43, 2008. · Zbl 1156.65078 · doi:10.1016/j.amc.2007.11.039
[18] K. Omrani, “Numerical methods and error analysis for the nonlinear Sivashinsky equation,” Applied Mathematics and Computation, vol. 189, no. 1, pp. 949-962, 2007. · Zbl 1128.65082 · doi:10.1016/j.amc.2006.11.169
[19] N. Khiari, T. Achouri, M. L. Ben Mohamed, and K. Omrani, “Finite difference approximate solutions for the Cahn-Hilliard equation,” Numerical Methods for Partial Differential Equations, vol. 23, no. 2, pp. 437-455, 2007. · Zbl 1119.65080 · doi:10.1002/num.20189
[20] K. Omrani and M. Ayadi, “Finite difference discretization of the Benjamin-Bona-Mahony-Burgers equation,” Numerical Methods for Partial Differential Equations, vol. 24, no. 1, pp. 239-248, 2008. · Zbl 1133.65067 · doi:10.1002/num.20256
[21] R. C. Mittal and G. Arora, “Quintic B-spline collocation method for numerical solution of the extended Fisher-Kolmogorov equation,” International Journal of Applied Mathematics and Mechanics, vol. 6, no. 1, pp. 74-85, 2010. · Zbl 1222.65110
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.