×

Conditions for strong ellipticity and M-eigenvalues. (English) Zbl 1233.74004

Summary: The strong ellipticity condition plays an important role in nonlinear elasticity and in materials. In this paper, we define M-eigenvalues for an elasticity tensor. The strong ellipticity condition holds if and only if the smallest M-eigenvalue of the elasticity tensor is positive. If the strong ellipticity condition holds, then the elasticity tensor is rank-one positive definite. The elasticity tensor is rank-one positive definite if and only if the smallest Z-eigenvalue of the elasticity tensor is positive. A Z-eigenvalue of the elasticity tensor is an M-eigenvalue but not vice versa. If the elasticity tensor is second-order positive definite, then the strong ellipticity condition holds. The converse conclusion is not right. Computational methods for finding M-eigenvalues are presented.

MSC:

74B99 Elastic materials
15A18 Eigenvalues, singular values, and eigenvectors
Full Text: DOI

References:

[1] Cardoso J F. High-order contrasts for independent component analysis. Neural Computation, 1999, 11: 157–192 · doi:10.1162/089976699300016863
[2] Chang K C, Pearson K, Zhang T. Perron-Frobenius theorem for nonnegative tensors. Commu Math Sci, 2008, 6: 507–520 · Zbl 1147.15006
[3] Chang K C, Pearson K, Zhang T. On eigenvalue problems of real symmetric tensors. Journal of Mathematical Analysis and Applications, 2009, 350: 416–422 · Zbl 1157.15006 · doi:10.1016/j.jmaa.2008.09.067
[4] Basser P J, Pajevic S. Spectral decomposition of a 4th-order covariance tensor: Applications to diffusion tensor MRI. Signal Processing, 2007, 87: 220–236 · Zbl 1186.94049 · doi:10.1016/j.sigpro.2006.02.050
[5] Cox D, Little J, O’shea D. Using Algebraic Geometry. New York: Springer-Verlag, 1998
[6] De Lathauwer L, De Moor B, Vandewalle J. On the best rank-1 and rank-(R 1,R 2,...,R N) approximation of higher-order tensor. SIAM J Matrix Anal Appl, 2000, 21: 1324–1342 · Zbl 0958.15026 · doi:10.1137/S0895479898346995
[7] Knowles J K, Sternberg E. On the ellipticity of the equations of non-linear elastostatics for a special material. J Elasticity, 1975, 5: 341–361 · Zbl 0323.73010 · doi:10.1007/BF00126996
[8] Knowles J K, Sternberg E. On the failure of ellipticity of the equations for finite elastostatic plane strain. Arch Ration Mech Anal, 1977, 63: 321–336 · Zbl 0351.73061 · doi:10.1007/BF00279991
[9] Kofidis E, Regalia P A. On the best rank-1 approximation of higher-order supersymmetric tensors. SIAM J Matrix Anal Appl, 2002, 23: 863–884 · Zbl 1001.65035 · doi:10.1137/S0895479801387413
[10] Lasserre J B. Global optimization with polynomials and the problems of moments. SIAM Journal on Optimization, 2001, 11: 796–817 · Zbl 1010.90061 · doi:10.1137/S1052623400366802
[11] Lim L -H. Singular values and eigenvalues of tensors: a variational approach. In: Proceedings of the IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP’ 05), Vol 1. 2005, 129–132
[12] Ling C, Nie J, Qi L, Ye Y. SDP and SOS relaxations for bi-quadratic optimization over unit spheres. Department of Applied Mathematics, The Hong Kong Polytechnic University, July 2008. Manuscript
[13] Morse PM, Feschbach H. Methods of Theoretic Physics, Vol 1. New York: McGraw-Hill, 1979, 519
[14] Ni G, Qi L, Wang F, Wang Y. The degree of the E-characteristic polynomial of an even order tensor. J Math Anal Appl, 2007, 329: 1218–1229 · Zbl 1154.15304 · doi:10.1016/j.jmaa.2006.07.064
[15] Parrilo P A. Semidefinite programming relaxation for semialgebraic Problems. Mathematical Programming, 2003, 96: 293–320 · Zbl 1043.14018 · doi:10.1007/s10107-003-0387-5
[16] Qi L. Eigenvalues of a real supersymmetric tensor. J Symbolic Computation, 2005, 40: 1302–1324 · Zbl 1125.15014 · doi:10.1016/j.jsc.2005.05.007
[17] Qi L. Rank and eigenvalues of a supersymmetric tensor, a multivariate homogeneous polynomial and an algebraic surface defined by them. J Symbolic Computation, 2006, 41: 1309–1327 · Zbl 1121.14050 · doi:10.1016/j.jsc.2006.02.011
[18] Qi L. Eigenvalues and invariants of tensors. J Math Anal Appl, 2007, 325: 1363–1377 · Zbl 1113.15020 · doi:10.1016/j.jmaa.2006.02.071
[19] Qi L, Sun W, Wang Y. Numerical multilinear algebra and its applications. Frontiers of Mathematics in China, 2007, 2(4): 501–526 · Zbl 1134.65033 · doi:10.1007/s11464-007-0031-4
[20] Qi L, Wang F, Wang Y. Z-eigenvalue methods for a global polynomial optimization problem. Mathematical Programming, 2009, 118: 301–316 · Zbl 1169.90022 · doi:10.1007/s10107-007-0193-6
[21] Qi L, Wang Y, Wu E X. D-eigenvalues of diffusion kurtosis tensor. Journal of Computational and Applied Mathematics, 2008, 221: 150–157 · Zbl 1176.65046 · doi:10.1016/j.cam.2007.10.012
[22] Rosakis P. Ellipticity and deformations with discontinuous deformation gradients in finite elastostatics. Arch Ration Mech Anal, 1990, 109: 1–37 · Zbl 0731.73023 · doi:10.1007/BF00377977
[23] Simpson H C, Spector S J. On copositive matrices and strong ellipticity for isotropic elastic materials. Arch Rational Mech Anal, 1983, 84: 55–68 · Zbl 0526.73026 · doi:10.1007/BF00251549
[24] Thomson W (Lord Kelvin). Elements of a mathematical theory of elasticity. Philos Trans R Soc, 1856, 166: 481 · Zbl 1200.01053 · doi:10.1098/rstl.1856.0022
[25] Thomson W (Lord Kelvin). Elasticity. Encyclopedia Briannica, Vol 7. 9th Ed. London, Edingburgh: Adam and Charles Black, 1878, 796–825
[26] Wang Y, Aron M. A reformulation of the strong ellipticity conditions for unconstrained hyperelastic media. Journal of Elasticity, 1996, 44: 89–96 · Zbl 0876.73030 · doi:10.1007/BF00042193
[27] Wang Y, Qi L, Zhang X. A practical method for computing the largest M-eigenvalue of a fourth-order partially symmetric tensor. Numerical Linear Algebra with Applications (to appear) · Zbl 1224.65101
[28] Zhang T, Golub G H. Rank-1 approximation of higher-order tensors. SIAM J Matrix Anal Appl, 2001, 23: 534–550 · Zbl 1001.65036 · doi:10.1137/S0895479899352045
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.