×

Critical higher order Sturm-Liouville difference operators. (English) Zbl 1233.39002

The article deals with the \(2n\)th-order Sturm–Liouville difference operators \[ L(y)_k = \sum_{\nu=0}^n (-\Delta)^\nu (r_k^{[\nu]} \Delta^\nu y_{k-\nu}), \qquad k \in {\mathbb Z}, \] and the associated matrix operators \[ ({\mathcal T}y)_k = \sum_{j=k-n}^{k+n} t_{kj}y_j, \qquad k \in {\mathbb N}, \] defined by infinite symmetric banded matrices \(T = (t_{\mu\nu})\) with \(t_{\mu\nu} = t_{\nu\mu}\), \(\mu,\nu \in {\mathbb Z}\), \(t_{\mu\nu} = 0\) for \(|\mu - \nu| > n\). The arguments of the authors are based on the relationship between \(L\) and linear Hamiltonian difference systems \[ \Delta x_k = Ax_{k+1} + B_ku_k, \qquad \Delta u_k = C_kx_{k+1} - A^Tu_k \] whose recessive solutions allow them to introduce the class of \(p\)-critical Sturm–Liouville operators. The main result (Theorem 1) states that, among arbitrary small perturbations of a \(p\)-critical \(2n\)th-order Sturm–Liouville difference operator \(L\), there exist perturbations for which the perturbated operator \(\hat{L}\) is supercritical. In the end of the article the one-term difference operator \(L(y) = (-\Delta0^n(r_k\Delta^ny_k)\) is considered in details.

MSC:

39A10 Additive difference equations
39A70 Difference operators
39A12 Discrete version of topics in analysis
34B24 Sturm-Liouville theory
47B39 Linear difference operators
Full Text: DOI

References:

[1] Ahlbrandt C.D., Discrete Hamiltonian Systems: Difference Equations, Continued Fractions, and Riccati Equations (1996) · Zbl 0860.39001
[2] DOI: 10.1006/jmaa.1996.0177 · Zbl 0855.39018 · doi:10.1006/jmaa.1996.0177
[3] DOI: 10.1216/rmjm/1181071889 · Zbl 0894.39005 · doi:10.1216/rmjm/1181071889
[4] DOI: 10.1016/S0893-9659(98)00156-6 · Zbl 0933.39034 · doi:10.1016/S0893-9659(98)00156-6
[5] DOI: 10.1006/jmaa.1995.1129 · Zbl 0831.39001 · doi:10.1006/jmaa.1995.1129
[6] DOI: 10.1080/10236199808808154 · Zbl 0921.39005 · doi:10.1080/10236199808808154
[7] Došlý O., Arch. Math. (Brno) 31 pp 217– (1995)
[8] DOI: 10.1006/jdeq.1993.1042 · Zbl 0807.47004 · doi:10.1006/jdeq.1993.1042
[9] DOI: 10.1016/S0024-3795(01)00328-7 · Zbl 1002.39028 · doi:10.1016/S0024-3795(01)00328-7
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.