×

The Seiberg-Witten invariants of negative definite plumbed 3-manifolds. (English) Zbl 1231.32020

The topology of a normal complex surface singularity is determined by the resolution graph \(\Gamma\). In fact, a small neighborhood of the singularity is homeomorphic to the cone over the link \(M\) and \(M\) is a plumbed 3-manifold associated with \(\Gamma\).
Suppose that the plumbed 3-manifold \(M\) is a rational homology sphere. In the paper under review, the author studies the Seiberg-Witten invariant of the manifold \(M\) in view of invariants of surface singularities, and provides two new combinatorial formulas for the Seiberg-Witten invariant. The first one is sort of the constant term of a “multivariable Hilbert polynomial”. More precisely, it is the periodic constant of a zeta function \(Z(\mathbf t)\) associated with the graph \(\Gamma\). The periodic constant plays an important role in the addition formula for the geometric genus of splice quotients [T. Okuma, Trans. Am. Math. Soc. 360, No. 12, 6643–6659 (2008; Zbl 1162.32017)] and a surgery formula for the Seiberg-Witten invariant given by G. Braun and the author [J. Reine Angew. Math. 638, 189–208 (2010; Zbl 1232.57013)]. As these formulas implied the Seiberg-Witten invariant conjecture of the author and L. I. Nicolaescu for splice quotients [Geom. Topol. 6, 269–328 (2002; Zbl 1031.32023)], the first formula in the present paper verifies that the identity of \(Z(\mathbf t)\) with a series determined by the “divisorial multi-index filtration” implies the conjecture.
The second formula realizes the Seiberg-Witten invariant as the normalized Euler characteristic of the lattice cohomology associated with \(\Gamma\) [the author, Publ. Res. Inst. Math. Sci. 44, No. 2, 507–543 (2008; Zbl 1149.14029)]. This theory is considered as a highly sophisticated generalization of a method using Laufer type computation sequences. The formula supports the conjectural connections between the Seiberg-Witten-Floer homology, or the Heegaard-Floer homology, and the lattice cohomology.

MSC:

32S25 Complex surface and hypersurface singularities
32S05 Local complex singularities
57M27 Invariants of knots and \(3\)-manifolds (MSC2010)
32S50 Topological aspects of complex singularities: Lefschetz theorems, topological classification, invariants
32C35 Analytic sheaves and cohomology groups
57R57 Applications of global analysis to structures on manifolds

References:

[1] Braun, G., Némethi, A.: Surgery formula for Seiberg-Witten invariants of nega- tive definite plumbed 3-manifolds. J. Reine Angew. Math. 638, 189-208 (2010) · Zbl 1232.57013 · doi:10.1515/CRELLE.2010.007
[2] Campillo, A., Delgado, F., Gusein-Zade, S. M.: Poincaré series of a rational surface singularity. Invent. Math. 155, 41-53 (2004) · Zbl 1060.14054 · doi:10.1007/s00222-003-0310-y
[3] Guse\?ın-Zade, S. M., Delgado, F., Campillo, A.: Universal abelian covers of rational sur- face singularities, and multi-index filtrations. Funktsional. Anal. i Prilozhen. 42, no. 2, 3-10 (2008) (in Russian) · Zbl 1156.14317 · doi:10.1007/s10688-008-0013-7
[4] Cutkosky, S. D., Herzog, J., Reguera, A.: Poincaré series of resolutions of sur- face singularities. Trans. Amer. Math. Soc. 356, 1833-1874 (2004) · Zbl 1076.14006 · doi:10.1090/S0002-9947-03-03346-4
[5] Gompf, R. E., Stipsicz, A. I.: 4-Manifolds and Kirby Calculus. Grad. Stud. Math. 20, Amer. Math. Soc. (1999) · Zbl 0933.57020
[6] Lescop, C.: Global Surgery Formula for the Casson-Walker Invariant. Ann. of Math. Stud. 140, Princeton Univ. Press (1996) · Zbl 0949.57008
[7] Marcolli, M., Wang, B. L.: Seiberg-Witten invariant and the Casson-Walker invariant for rational homology 3-spheres. In: Proc. Euroconf. on Partial Differential Equations and their Applications to Geometry and Physics (Castelvecchio Pascoli, 2000), Geom. Dedicata 91, 45-58 (2002) · Zbl 0994.57027 · doi:10.1023/A:1016299716922
[8] Némethi, A.: Line bundles associated with normal surface singularities. arXiv:math/0310084; published as part of
[9] Némethi, A.: On the Ozsváth-Szabó invariant of negative definite plumbed 3-manifolds. Geom. Topol. 9, 991-1042 (2005) · Zbl 1138.57301 · doi:10.2140/gt.2005.9.991
[10] Némethi, A.: Graded roots and singularities. In: Singularities in Geometry and Topology, World Sci., Hackensack, NJ, 394-463 (2007) · Zbl 1125.14019
[11] Némethi, A.: Lattice cohomology of normal surface singulariites. Publ. RIMS Kyoto Univ. 44, 507-543 (2008) · Zbl 1149.14029 · doi:10.2977/prims/1210167336
[12] Némethi, A.: Poincaré series associated with surface singularities. In: Singularities I: Al- gebraic and Analytic Aspects, Contemp. Math. 474, Amer. Math. Soc., 271-299 (2008) · Zbl 1162.32004
[13] Némethi, A.: The cohomology of line bundles of splice-quotient singularities. arXiv:0810.4129 · Zbl 1241.32024
[14] Némethi, A.: Two exact sequences for lattice cohomology. In: Proceedings dedicated to H. Moscovici’s 65th birthday, to appear; arXiv:1001.0640
[15] Némethi, A., Nicolaescu, L. I.: Seiberg-Witten invariants and surface singularities. Geom. Topol. 6, 269-328 (2002) · Zbl 1031.32023 · doi:10.2140/gt.2002.6.269
[16] Némethi, A., Okuma, T.: On the Casson invariant conjecture of Neumann-Wahl. J. Al- gebraic Geom. 18, 135-149 (2009) · Zbl 1154.14025 · doi:10.1090/S1056-3911-08-00493-1
[17] Nicolaescu, L. I.: Seiberg-Witten invariants of rational homology 3-spheres. Comm. Contemp. Math. 6, 833-866 (2004) · Zbl 1082.57010 · doi:10.1142/S0219199704001586
[18] Okuma, T.: The geometric genus of splice quotient singularities. Trans. Amer. Math. Soc. 360, 6643-6659 (2008) · Zbl 1162.32017 · doi:10.1090/S0002-9947-08-04559-5
[19] Ozsváth, P. S., Szabó, Z.: Absolutely graded Floer homologies and intersection forms for four-manifolds with boundaries. Adv. Math. 173, 179-261 (2003) · Zbl 1025.57016 · doi:10.1016/S0001-8708(02)00030-0
[20] Ozsváth, P. S., Szabó, Z.: On the Floer homology of plumbed three-manifolds. Geom. Topol. 7, 185-224 (2003) · Zbl 1130.57302 · doi:10.2140/gt.2003.7.185
[21] Rustamov, R.: Surgery formula for the renormalized Euler characteristic of Heegaard Floer homology. arXiv:math/0409294
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.