×

Wiener-Tauberian type theorems for radial sections of homogeneous vector bundles on certain rank one Riemannian symmetric spaces of noncompact type. (English) Zbl 1228.43009

The authors show that a uniform treatment yields Wiener-Tauberian type results for various Banach algebras and modules consisting of radial sections of some homogeneous vector bundles on rank one Riemannian symmetric spaces \(G/K\) of noncompact type.

MSC:

43A85 Harmonic analysis on homogeneous spaces
22E30 Analysis on real and complex Lie groups
Full Text: DOI

References:

[1] Anker J.-P.: La forme exacte de l’estimation fondamentale de Harish-Chandra. C. R. Acad. Sci. Paris S. I Math. 305(9), 371–374 (1987) MR0910372 (89i:22016) · Zbl 0636.22005
[2] Anker J.-P.: The spherical Fourier transform of rapidly decreasing functions. A simple proof of a characterization due to Harish-Chandra, Helgason, Trombi, and Varadarajan. J. Funct. Anal. 96(2), 331–349 (1991) MR1101261 (92d:22008) · Zbl 0732.43006 · doi:10.1016/0022-1236(91)90065-D
[3] Barker, W.H.: L p harmonic analysis on $${{\(\backslash\)rm SL}(2,\(\backslash\)mathbb{R})}$$ . Mem. Am. Math. Soc. 76(393) (1988) MR0946617 (89k:22014)
[4] Benyamini Y., Weit Y.: Harmonic analysis of spherical functions on SU(1, 1). Ann. Inst. Fourier (Grenoble) 42(3), 671–694 (1992) MR1182644 (94d:43009) · Zbl 0763.43006 · doi:10.5802/aif.1305
[5] Ben Natan Y., Benyamini Y., Hedenmalm H., Weit Y.: Wiener’s Tauberian theorem in L 1(G//K) and harmonic functions in the unit disk. Bull. Am. Math. Soc. (N.S.) 32(1), 43–49 (1995) MR1273399 (95g:43009) · Zbl 0836.43020 · doi:10.1090/S0273-0979-1995-00554-9
[6] Ben Natan Y., Benyamini Y., Hedenmalm H., Weit Y.: Wiener’s Tauberian theorem for spherical functions on the automorphism group of the unit disk. Ark. Mat. 34(2), 199–224 (1996) MR1416664 (98b:43009) · Zbl 0858.43003 · doi:10.1007/BF02559544
[7] Blozinski A.P.: On a convolution theorem for L(p, q) spaces. Trans. Am. Math. Soc. 164, 255–265 (1972) 46E30 (47G05) MR0415293 (54 #3383) · Zbl 0262.43010
[8] Branson T.P., Ólafsson G., Schlichtkrull H.: A bundle valued Radon transform, with applications to invariant wave equations. Q. J. Math. Oxford Ser. (2) 45(180), 429–461 (1994) MR1315457 (95k:22020) · Zbl 0924.43010 · doi:10.1093/qmath/45.4.429
[9] Campoli O.A.: Paley–Wiener type theorems for rank-1 semisimple Lie groups. Rev. Un. Mat. Argentina 29(3), 197–221 (1979/1980). MR0602486 (82i:22013) · Zbl 0457.22008
[10] Camporesi R.: The spherical transform for homogeneous vector bundles over Riemannian symmetric spaces. J. Lie Theory 7(1), 29–60 (1997) MR1450744 (98j:58114) · Zbl 0871.43005
[11] Camporesi R.: Harmonic analysis for spinor fields in complex hyperbolic spaces. Adv. Math. 154(2), 367–442 (2000) MR1784680 (2001k:22015) · Zbl 0978.43004 · doi:10.1006/aima.2000.1929
[12] Camporesi R., Pedon E.: Harmonic analysis for spinors on real hyperbolic spaces. Colloq. Math. 87(2), 245–286 (2001) MR1814669 (2002c:43012) · Zbl 0968.22009 · doi:10.4064/cm87-2-10
[13] Carleson, L.: Wiener’s Tauberian theorem. In: Proceedings of Symposium on Pure Mathematics, vol. 60, pp. 65–70. American Mathematical Society, Providence (1997). MR1460275 (98k:43004) · Zbl 0881.42001
[14] Cowling M.: The Kunze–Stein phenomenon. Ann. Math. (2) 107(2), 209–234 (1978) MR0507240 (58 #22398) · doi:10.2307/1971142
[15] Cowling, M.: Herz’s ”principe de majoration” and the Kunze–Stein phenomenon. In: CMS Conf. Proc., vol. 21, pp. 73–88. American Mathematical Society, Providence (1997). MR1472779 (98k:22040) · Zbl 0964.22008
[16] Cowling M., Giulini S., Meda S.: L p L q estimates for functions of the Laplace–Beltrami operator on noncompact symmetric spaces I. Duke Math. J. 72(1), 109–150 (1993) MR1242882 (95b:22031) · Zbl 0807.43002 · doi:10.1215/S0012-7094-93-07206-7
[17] Dahlner, A.: A Wiener Tauberian theorem for weighted convolution algebras of zonal functions on the automorphism group of the unit disc. In: Contemporary Mathematics, vol. 404, pp. 67–102. American Mathematical Society, Providence (2006). MR2244005 (2007k:43004) · Zbl 1106.43001
[18] Ehrenpreis L., Mautner F.I.: Some properties of the Fourier transform on semi-simple Lie groups I. Ann. Math. (2) 61, 406–439 (1955) MR0069311 (16,1017b) · Zbl 0066.35701 · doi:10.2307/1969808
[19] Ehrenpreis L., Mautner F.I.: Uniformly bounded representations of groups. Proc. Natl. Acad. Sci. USA 41, 231–233 (1955) MR0071434 (17,126b) · Zbl 0064.02604 · doi:10.1073/pnas.41.4.231
[20] Flensted-Jensen M.: Paley–Wiener type theorems for a differential operator connected with symmetric spaces. Ark. Mat. 10, 143–162 (1972) MR0318974 (47 #7520) · Zbl 0233.42012 · doi:10.1007/BF02384806
[21] Gangolli R.: On the symmetry of L 1 algebras of locally compact motion groups, and the Wiener Tauberian theorem. J. Funct. Anal. 25(3), 244–252 (1977) MR0466404 (57 #6284) · Zbl 0347.43005 · doi:10.1016/0022-1236(77)90070-2
[22] Gangolli R., Varadarajan V.S.: Harmonic Analysis of Spherical Functions on Real Reductive Groups. In: Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 101. Springer, Berlin (1988) MR0954385 (89m:22015) · Zbl 0675.43004
[23] Grafakos L.: Classical and Modern Fourier Analysis. Pearson Education Inc., New Jersey (2004) · Zbl 1148.42001
[24] Harish-Chandra: Spherical functions on a semisimple Lie group I. Am. J. Math. 80, 241–310, MR0094407 (20 #925) (1958) · Zbl 0093.12801
[25] Harish-Chandra: Discrete series for semisimple Lie groups II explicit determination of the characters Acta Math. 116, 1–111, MR0219666 (36 #2745) (1966) · Zbl 0199.20102
[26] Helgason S.: Groups and Geometric Analysis Integral Geometry, Invariant Differential Operators, and Spherical Functions. Academic Press, Orlando (1984) MR0754767 (86c:22017) · Zbl 0543.58001
[27] Helgason S., Johnson K.: The bounded spherical functions on symmetric spaces. Adv. Math. 3, 586–593 (1969) MR0249542 (40 #2787) · Zbl 0188.45405 · doi:10.1016/0001-8708(69)90010-3
[28] Hoffman, K.: Banach spaces of analytic functions. In: Prentice-Hall Series in Modern Analysis. Prentice-Hall. Englewood Cliffs (1962). MR0133008 (24 #A2844)
[29] Ionescu A.D.: An endpoint estimate for the Kunze–Stein phenomenon and related maximal operators. Ann. Math. (2) 152(1), 259–275 (2000) MR1792296 (2001m:22017) · Zbl 0970.43002 · doi:10.2307/2661383
[30] Kunze R.A., Stein E.M.: Uniformly bounded representations and harmonic analysis of the 2 {\(\times\)} 2 real unimodular group. Am. J. Math. 82, 1–62 (1960) MR0163988 (29 #1287) · Zbl 0156.37104 · doi:10.2307/2372876
[31] Lawson, H.B. Jr., Michelsohn, M.-L.: Spin Geometry. In: Princeton Mathematical Series, vol. 38. Princeton University Press, Princeton (1989). MR1031992 (91g:53001)
[32] Leptin H.: Ideal theory in group algebras of locally compact groups. Invent. Math. 31(3), 259–278 (1975) MR0399344 (53 #3189) · Zbl 0328.22012 · doi:10.1007/BF01403147
[33] Lohoué N., Rychener Th.: Some function spaces on symmetric spaces related to convolution operators. J. Funct. Anal. 55(2), 200–219 (1984) MR0733916 (85d:22024) · Zbl 0556.43002 · doi:10.1016/0022-1236(84)90010-7
[34] Mackey G.W.: Induced representations of locally compact groups. II. The Frobenius reciprocity theorem. Ann. Math. (2) 58, 193–221 (1953) MR0056611 (15,101a) · Zbl 0051.01901 · doi:10.2307/1969786
[35] Mautner F.I.: Induced representations. Am. J. Math. 74, 737–758 (1952) MR0049199 (14,134d) · Zbl 0049.35701 · doi:10.2307/2372277
[36] Mohanty P., Ray S.K., Sarkar R.P., Sitaram A.: The Helgason–Fourier transform for symmetric spaces II. J. Lie Theory 14(1), 227–242 (2004) MR2040178 (2005b:43005) · Zbl 1047.43013
[37] Narayanan E.K.: Wiener Tauberian theorems for L 1(K\(\backslash\)G/K). Pac. J. Math. 241(1), 117–126 (2009) MR2485460 (2009k:43005) · Zbl 1165.43006 · doi:10.2140/pjm.2009.241.117
[38] Pedon, E.: Analyse harmonique des formes différentielles sur l’espace hyperbolique réel. Ph.D. Thesis, Université Henri-Poincaré (Nancy 1) (1997). http://emmanuel.pedon.free.fr/maths/index.html
[39] Pusti, S.: Spectral analysis and synthesis for radial sections of homogenous vector budles on certain noncompact Riemannian symmetric spaces. Ph. D. Thesis, Indian statistical Institute, Calcutta (2008)
[40] Pusti, S., Sarkar, R.P.: Schwartz’s Theorem for radial sections of homogenous vector bundles on certain noncompact Riemannian symmetric spaces. Israel J. Math. (2010, to appear)
[41] Ray S.K., Sarkar R.P.: Fourier and Radon transform on harmonic NA groups. Trans. Am. Math. Soc. 361(8), 4269–4297 (2009) MR2500889 (2010a:43018) · Zbl 1180.43005 · doi:10.1090/S0002-9947-09-04800-4
[42] Saeki S.: Translation invariant operators on groups. Tôhoku Math. J. 22(2), 409–419 (1970) MR0275057 (43 #815) · Zbl 0206.12601 · doi:10.2748/tmj/1178242767
[43] Sarkar R.P.: Wiener Tauberian theorems for SL2(R). Pac. J. Math. 177(2), 291–304 (1997) MR1444784 (98m:43003) · Zbl 0868.43010 · doi:10.2140/pjm.1997.177.291
[44] Sarkar R.P.: Wiener Tauberian theorem for rank one symmetric spaces. Pac. J. Math. 186(2), 349–358 (1998) MR1663818 (99k:43004) · Zbl 0931.43009 · doi:10.2140/pjm.1998.186.349
[45] Sitaram A.: An analogue of the Wiener-Tauberian theorem for spherical transforms on semisimple Lie groups. Pac. J. Math. 89(2), 439–445 (1980) MR0599131 (82e:43008) · Zbl 0455.43008 · doi:10.2140/pjm.1980.89.439
[46] Sitaram A.: On an analogue of the Wiener Tauberian theorem for symmetric spaces of the noncompact type. Pac. J. Math. 133(1), 197–208 (1988) MR0936365 (89e:43024) · Zbl 0628.43011 · doi:10.2140/pjm.1988.133.197
[47] Stein, E.M., Weiss G.: Introduction to Fourier analysis on Euclidean spaces. In: Princeton Mathematical Series No. 32. Princeton University Press, Princeton (1971) · Zbl 0232.42007
[48] van Dijk G., Pasquale A.: Harmonic analysis on vector bundles over Sp(1, n)/Sp(1) {\(\times\)} Sp(n). Enseign. Math. (2) 45(3–4), 219–252 (1999) MR1742329 (2001b:43011) · Zbl 0967.43005
[49] Vogan D.: The algebraic structure of the representation of semisimple Lie groups I. Ann. Math. (2) 109(1), 1–60 (1979) MR0519352 (81j:22020) · Zbl 0424.22010 · doi:10.2307/1971266
[50] Warner G.: Harmonic Analysis on Semi-Simple Lie Groups II. Springer, Berlin (1972) MR0499000 (58 #16980)
[51] Wiener N.: Tauberian theorems. Ann. Math. 2(33(1), 1–100 (1932) MR1503035 · JFM 58.0226.02 · doi:10.2307/1968102
[52] Zafran M.: A multilinear interpolation theorem. Stud. Math. 62(2), 107–124 (1978) MR0499959 (80h:46119) · Zbl 0389.46025
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.