×

Existence of homoclinic orbits for \(2n\)th-order nonlinear difference equations containing both many advances and retardations. (English) Zbl 1228.39005

This paper is concerned with the \(2n\)-th order difference equation
\[ \Delta ^{n}\left( r(t-n)\Delta ^{n}u(t-n)\right) +q(t)u(t)=f\left( t,u(t+n\right) ,\dots,u(t),\dots,u(t-n)),\quad t\in\mathbb Z. \]
A solution \(\left\{ u(n)\right\} _{n\in\mathbb Z}\) is said to be homoclinic if \(\lim_{t\to \pm \infty}u(t)=0\). Assuming the function \(f\) is a potential (i.e., a derived function) satisfying several sets of appropriate conditions, existence of one or infinitely many homoclinic solutions are derived. The proofs make use of variational setups and critical point theory. Examples are also given for illustration.
It should be remarked that if the variable \(t\) in the above equation is interpreted as a spatial variable, then it is not necessary to make use of the terms advances and retardations in the title (which are usually accompanied with time variables).

MSC:

39A12 Discrete version of topics in analysis
39A22 Growth, boundedness, comparison of solutions to difference equations
37C29 Homoclinic and heteroclinic orbits for dynamical systems
Full Text: DOI

References:

[1] Agarwal, R. P., Difference Equations and Inequalities: Theory, Methods, and Applications (2000), Marcel Dekker, Inc. · Zbl 0952.39001
[2] Agarwal, R. P.; Popenda, J., Periodic solution of first order linear difference equations, Math. Comput. Modelling, 22, 1, 11-19 (1995) · Zbl 0871.39002
[3] Agarwal, R. P.; Perera, K.; OʼRegan, D., Multiple positive solutions of singular discrete \(p\)-Laplacian problems via variational methods, Adv. Difference Equ., 2005, 2, 93-99 (2005) · Zbl 1098.39001
[4] Ahlbrandt, C. D.; Peterson, A. C., The \((n, n)\)-disconjugacy of a \(2n\) th-order linear difference equation, Comput. Math. Appl., 28, 1-9 (1994) · Zbl 0815.39003
[5] Ambrosetti, A.; Rabinowitz, P. H., Dual variational methods in critical point theory and applications, J. Funct. Anal., 14, 4, 349-381 (1973) · Zbl 0273.49063
[6] Bartolo, P.; Benci, V.; Fortunato, D., Abstract critical point theorems and applications to some nonlinear problems with strong resonance at infinity, Nonlinear Anal., 7, 241-273 (1983) · Zbl 0522.58012
[7] Cai, X. C.; Yu, J. S., Existence of periodic solutions for a \(2n\) th-order nonlinear difference equation, J. Math. Anal. Appl., 329, 870-878 (2007) · Zbl 1153.39302
[8] Chen, P.; Tang, X. H., Existence of infinitely many homoclinic orbits for fourth-order difference systems containing both advance and retardation, Appl. Math. Comput., 217, 4408-4415 (2011) · Zbl 1211.39004
[9] Chen, P.; Tang, X. H., Existence of homoclinic solutions for a class of nonlinear difference equations, Adv. Difference Equ., 2010 (2010), Article ID 470375 · Zbl 1208.39003
[10] Guo, Z. M.; Xu, Y. T., Existence of periodic solutions to a class of second-order neutral differential difference equations, Acta Anal. Funct. Appl., 5, 13-19 (2003) · Zbl 1024.34063
[11] Guo, Z. M.; Yu, J. S., The existence of periodic and subharmonic solutions for second order superlinear difference equations, Sci. China Ser. A, 46, 506-513 (2003) · Zbl 1215.39001
[12] Guo, Z. M.; Yu, J. S., Periodic and subharmonic solutions for superquadratic discrete Hamiltonian systems, Nonlinear Anal., 55, 969-983 (2003) · Zbl 1053.39011
[13] Guo, Z. M.; Yu, J. S., The existence of periodic and subharmonic solutions of subquadratic second order difference equations, J. Lond. Math. Soc., 68, 419-430 (2003) · Zbl 1046.39005
[14] Izydorek, M.; Janczewska, J., Homoclinic solutions for a class of second order Hamiltonian systems, J. Differential Equations, 219, 2, 375-389 (2005) · Zbl 1080.37067
[15] Kocic, V. L.; Ladas, G., Global Behavior of Nonlinear Difference Equations of Higher Order with Applications (1993), Kluwer: Kluwer Dordrecht · Zbl 0787.39001
[16] Liang, H. H.; Weng, P. X., Existence and multiple solutions for a second order difference boundary value problem via critical point theory, J. Math. Anal. Appl., 326, 511-520 (2007) · Zbl 1112.39008
[17] Ma, M.; Guo, Z. M., Homoclinic orbits and subharmonics for nonlinear second order difference equations, Nonlinear Anal., 67, 1737-1745 (2007) · Zbl 1120.39007
[18] Ma, M.; Guo, Z. M., Homoclinic orbits for second order self-adjoint difference equations, J. Math. Anal. Appl., 323, 1, 513-521 (2006) · Zbl 1107.39022
[19] Mawhin, J.; Willem, M., Critical Point Theory and Hamiltonian Systems (1989), Springer-Verlag: Springer-Verlag New York · Zbl 0676.58017
[20] Omana, W.; Willem, M., Homoclinic orbits for a class of Hamiltonian systems, Differential Integral Equations, 5, 5, 1115-1120 (1992) · Zbl 0759.58018
[21] Ou, Z. Q.; Tang, C. L., Existence of homoclinic orbits for the second order Hamiltonian systems, J. Math. Anal. Appl., 291, 1, 203-213 (2004) · Zbl 1057.34038
[22] Peil, T.; Peterson, A., Asymptotic behavior of solutions of a two-term difference equation, Rocky Mountain J. Math., 24, 233-251 (1994) · Zbl 0809.39006
[23] Rabinowitz, P. H., Homoclinic orbits for a class of Hamiltonian systems, Proc. Roy. Soc. Edinburgh Sect. A, 114, 1-2, 33-38 (1990) · Zbl 0705.34054
[24] Rabinowitz, P. H.; Tanaka, K., Some results on connecting orbits for a class of Hamiltonian systems, Math. Z., 206, 3, 473-499 (1991) · Zbl 0707.58022
[25] Rabinowitz, P. H., Minimax Methods in Critical Point Theory with Applications in Differential Equations, CBMS Reg. Conf. Ser., vol. 65 (1986), Amer. Math. Soc.: Amer. Math. Soc. Providence · Zbl 0609.58002
[26] Rodriguez, J.; Etheridge, D. L., Periodic solutions of nonlinear second order difference equations, Adv. Difference Equ., 2005, 173-192 (2005) · Zbl 1098.39004
[27] Smets, D.; Willem, M., Solitary waves with prescribed speed on infinite lattices, J. Funct. Anal., 149, 266-275 (1997) · Zbl 0889.34059
[28] Tang, X. H.; Lin, X. Y., Existence of infinitely many homoclinic orbits in discrete Hamiltonian systems, J. Math. Anal. Appl., 373, 59-72 (2011) · Zbl 1208.39008
[29] Tang, X. H.; Lin, X. Y., Homoclinic solutions for a class of second-order discrete Hamiltonian systems, J. Difference Equ. Appl., 11, 1257-1273 (2010) · Zbl 1211.39006
[30] Xue, Y. F.; Tang, C. L., Existence of a periodic solution for subquadratic second-order discrete Hamiltonian system, Nonlinear Anal., 67, 2072-2080 (2007) · Zbl 1129.39008
[31] Yu, J. S.; Guo, Z. M.; Zou, X., Positive periodic solutions of second order self-adjoint difference equations, J. Lond. Math. Soc. (2), 71, 146-160 (2005) · Zbl 1073.39009
[32] Yu, J. S.; Long, Y. H.; Guo, Z. M., Subharmonic solutions with prescribed minimal period of a discrete forced pendulum equation, J. Dynam. Differential Equations, 16, 575-586 (2004) · Zbl 1067.39022
[33] Yu, J. S.; Shi, H. P.; Guo, Z. M., Homoclinic orbits for nonlinear difference equations containing both advance and retardation, J. Math. Anal. Appl., 352, 799-806 (2009) · Zbl 1160.39311
[34] Zhang, Z.; Yuan, R., Homoclinic solutions for some second order non-autonomous systems, Nonlinear Anal., 71, 5790-5798 (2009) · Zbl 1203.34068
[35] Zhou, Z.; Yu, J. S.; Guo, Z. M., Periodic solutions of higher-dimensional discrete systems, Proc. Roy. Soc. Edinburgh Sect. A, 134, 1013-1022 (2004) · Zbl 1073.39010
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.