×

Nilpotency of self homotopy equivalences with coefficients. (English) Zbl 1221.55008

For a based space \(X\) and a prime \(p\), let \({\mathcal E}(X)\) denote the group of based self-homotopy equivalences on \(X\), and let \({\mathcal E}_{\#}^m(X)\) (resp. \({\mathcal E}_{\#p}(X)\)) be its subgroup given by \({\mathcal E}_{\#}^m(X)=\text{Ker }[{\mathcal E}(X)\to \prod_{i\leq m}\text{aut }\pi_i(X)]\) (resp. \({\mathcal E}_{\#p}(X)= \text{Ker }[{\mathcal E}(X)\to \prod_{i\leq N}\text{aut }\pi_i(X;\mathbb Z/p)]\), where \(N=\dim X\) denotes the topological dimension or homotopical dimension). For a local coefficient system \({\mathcal M}=\{{\mathcal M}_x\}_{x\in X}\), let \({\mathcal E}(X,{\mathcal M})\) denote the subgroup of \({\mathcal E}(X)\) which induces automorphisms on \({\mathcal M}\).
In this paper, the authors study a generalization of a result due to E. Dror and A. Zabrodsky [Topology 18, 187–197 (1979; Zbl 0417.55008)] concerning the nilpotency in homotopy equivalences, and they prove several generalizations of it. For example, they prove that if \(X\) is a finite Postnikov piece and \(G\) is a subgroup of \({\mathcal E}(X,{\mathcal M})\) which acts nilpotently on both \(\pi_*(X)\) and \({\mathcal M}\), then \(G\) acts nilpotently on \(H^*(X,{\mathcal M})\). Moreover, they also prove that if \(\pi_1(X)\) is a nilpotent group with subgroup \(G\subset {\mathcal E}(X)\) which acts nilpotently on \(\pi_{i\leq N}(X)_{(p)}\) for any prime \(p\) and \(0\) and the nilpotency orders of all these actions are bounded, then \(G\) is nilpotent. Their proof is based on several basic facts of group theory and careful investigations concerning the self homotopy equivalences of spaces with local coefficients.

MSC:

55P10 Homotopy equivalences in algebraic topology
55P60 Localization and completion in homotopy theory
55N25 Homology with local coefficients, equivariant cohomology
55Q52 Homotopy groups of special spaces

Citations:

Zbl 0417.55008

References:

[1] Arkowitz, Martin, Problems on Self-homotopy equivalences, Contemp. Math., 274, 309-315 (2001) · Zbl 0973.55005
[2] Arkowitz, Martin; Lupton, Gregory; Murillo, Aniceto, Subgroups of the group of self-homotopy equivalences, Contemp. Math., 274, 21-32 (2001) · Zbl 0982.55002
[3] Baues, H. J., Obstruction Theory, 628 (1977) · Zbl 0361.55017
[4] Dror, E.; Dwyer, W.; Kan, D., Self-homotopy equivalences of virtually nilpotent spaces, Comm. Math. Helv., 56, 599-614 (1981) · Zbl 0504.55004 · doi:10.1007/BF02566229
[5] Dror, E.; Zabrodsky, A., Unipotency and nilpotency in homotopy equivalences, Topology, 18, 187-197 (1979) · Zbl 0417.55008 · doi:10.1016/0040-9383(79)90002-8
[6] Garvín, A.; Murillo, P. A.and Pavesic; Viruel, A., Nilpotency and localization of groups of fiber homotopy equivalences, Contemporary Math., 274, 145-157 (2001) · Zbl 0978.55006
[7] Gitler, S., Operations with local coefficients, Amer. Journal of Math., 82, 2, 156-188 (1963) · Zbl 0131.38006 · doi:10.2307/2373208
[8] Gorenstein, D., Finite groups (1968) · Zbl 0185.05701
[9] Hilton, P.; Mislin, G.; Roitberg, J., Localization of Nilpotent Groups and Spaces, 15 (1975) · Zbl 0323.55016
[10] Magnus, W.; Karrass, A.; Solitar, D., Combinatorial Group Theory, 13 (1966) · Zbl 0138.25604
[11] Maruyama, K., Localization of a certain group of self-homotopy equivalences, Pacific Journal of Math., 136, 293-301 (1989) · Zbl 0673.55006
[12] Maruyama, K.; Mimura, M., Nilpotent groups of the group of self-homotopy equivalences, Israel Journal of Math., 72, 313-319 (1990) · Zbl 0735.55003 · doi:10.1007/BF02773787
[13] Møller, J., Spaces of sections of Eilenberg-Mac Lane fibrations, Pacific Jour. of Math., 130, 1, 171-186 (1987) · Zbl 0599.55010
[14] Møller, J., Self-homotopy equivalences of \(H_*(-;\mathbb{Z}/p)\)-local spaces, Koday Math. Jour., 12, 270-281 (1989) · Zbl 0685.55005 · doi:10.2996/kmj/1138039038
[15] Rutter, J., Homotopy self-equivalences 1988-1999, Contemporary Math., 274, 1-12 (2001) · Zbl 0973.55001
[16] Scheerer, H.; Tanré, D., Variation zum Konzept der Lusternik-Schnirelmann Kategorie, Math. Nachr., 207, 183-194 (1999) · Zbl 0933.55003
[17] Siegel, J., \(k\)-invariants in local coefficients theory, Proc. Amer. Math. Soc., 29, 169-174 (1971) · Zbl 0214.49903
[18] Sullivan, D., Infinitesimal computations in topology, I.H.E.S. Publ. Math., 47, 269-331 (1977) · Zbl 0374.57002
[19] Whitehead, G., Elements of Homotopy Theory, 61 (1978) · Zbl 0406.55001
[20] Wilkerson, C., Applications of minimal simplicial groups, Topology, 15, 115-130 (1976) · Zbl 0345.55011 · doi:10.1016/0040-9383(76)90001-X
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.