×

Modelling left ventricular function under assist device support. (English) Zbl 1219.92045

Summary: Numerical simulations provide a unique approach for investigating the impact of left ventricular assist devices (LVADs) on the pump function of the heart. To this end, the fictitious domain (FD) method was incorporated within a non-conforming coupled fluid-solid mechanics solver creating a model capable of capturing the full range of cardiac motion under LVAD support, including contact of the cannula with the ventricular wall. To demonstrate and verify the properties of the applied method, convergence studies were performed showing linear convergence for both a fluid only problem with an immersed rigid body, as well as a fluid - solid coupled problem with a fluid immersed rigid body interacting with the coupled elastic solid. The model was implemented on a left ventricular (LV) geometry constructed from human MRI data. Simulations were performed to compare LV function with an FD prescribed LVAD cannula and with a cannula applied as a Dirichlet boundary. Good agreement was observed between the simulations for myocardial deformation, major flow features and rates of energy transfer. Finally, an LV simulation was performed to bring the ventricular wall into contact with the cannula, demonstrating the applicability of the model to investigating LV function under LVAD support.

MSC:

92C50 Medical applications (general)
92C35 Physiological flow
65C20 Probabilistic models, generic numerical methods in probability and statistics
92C10 Biomechanics
76D05 Navier-Stokes equations for incompressible viscous fluids
Full Text: DOI

References:

[1] Arabia, The success rates of long-term circulatory assist devices used currently for bridge to heart transplantation, The ASAIO Journal 42 pp 542– (1996) · doi:10.1097/00002480-199609000-00045
[2] Klotz, Left ventricular pressure and volume unloading during pulsatile versus nonpulsatile left ventricular assist device support, Annals of Thoracic Surgery 77 pp 143– (2004) · doi:10.1016/S0003-4975(03)01336-5
[3] Opie, Heart Physiology (2004)
[4] Mancini, The low incidence of myocardial recovery after left ventricular assist device implantation in patients with chronic heart failure, Circulation 98 pp 2383– (1998) · doi:10.1161/01.CIR.98.22.2383
[5] Birks, The role of bridge to transplantation: should LVAD patients be transplanted, Current Opinion in Cardiology 19 pp 148– (2004) · doi:10.1097/00001573-200403000-00015
[6] Burkhoff, LVAD induced reverse remodeling: basic and clinical implications for myocardial recovery, Journal of Cardiac Failure 12 pp 227– (2006) · doi:10.1016/j.cardfail.2005.10.012
[7] Williams, The Indications and patient selection for mechanical ventricular assistance, Annals of Thoracic Surgery 71 pp 86– (2001) · doi:10.1016/S0003-4975(00)02627-8
[8] Yang, Flow and myocardial interaction: an imaging perspective, Philosophical Transactions of the Royal Society 362 pp 1329– (2007) · doi:10.1098/rstb.2007.2119
[9] Kilner, The asymmetric redirection of flow through the heart, Nature 404 pp 759– (2000) · doi:10.1038/35008075
[10] Kilner, Our tortuous heart in dynamic mode: an echocardiographic study of mitral flow and movement in exercising subjects, Heart Vessels 12 pp 103– (1997) · doi:10.1007/BF02767127
[11] McQueen, A three-dimensional computer model of the human heart for studying cardiac fluid dynamics, Computers and Graphics 34 pp 56– (2000) · doi:10.1145/563788.604453
[12] Peskin, Ecology, Physiology, and Cell Biology, in: Case Studies in Mathematical Modeling pp 309– (1996)
[13] Peskin, Fiber architecture of the left ventricular wall: an asymptotic analysis, Communications on Pure and Applied Mathematics 42 pp 79– (1989) · Zbl 0664.92005 · doi:10.1002/cpa.3160420106
[14] Watanabe, Computer simulation of blood flow, left ventricular wall motion and their interrelationship by fluid-structure interaction finite element method, JSME International Journal 45 pp 1003– (2002) · doi:10.1299/jsmec.45.1003
[15] Nordsletten, Fluid-solid coupling for the investigation of diastolic and systolic human left ventricular function, International Journal for Numerical Methods in Biomedical Engineering · Zbl 1219.92046
[16] Reesink, Suction due to left ventricular assist: implications for device control and management, Artificial Organs 31 pp 542– (2007) · doi:10.1111/j.1525-1594.2007.00420.x
[17] Bertrand, A three-dimensional fictitious domain method for incompressible fluid flow problems, International Journal for Numerical Methods in Fluids 25 pp 719– (1997) · Zbl 0896.76033 · doi:10.1002/(SICI)1097-0363(19970930)25:6<719::AID-FLD585>3.0.CO;2-K
[18] Baaijens, A fictitious domain/mortar element method for fluid-structure interaction, International Journal for Numerical Methods in Fluids 35 pp 743– (2001) · Zbl 0979.76044 · doi:10.1002/1097-0363(20010415)35:7<743::AID-FLD109>3.0.CO;2-A
[19] van Loon, A fluid-structure interaction method with solid-rigid contact for heart valve dynamics, Journal of Computational Physics 217 pp 806– (2006) · Zbl 1099.74044 · doi:10.1016/j.jcp.2006.01.032
[20] Peskin, Flow patterns around heart valves: a numerical method, Journal of Computational Physics 10 pp 252– (1972) · Zbl 0244.92002 · doi:10.1016/0021-9991(72)90065-4
[21] Glowinski, A distributed lagrange multiplier/fictitious domain method for particulate flows, International Journal of Multiphase Flow 25 pp 755– (1999) · Zbl 1137.76592 · doi:10.1016/S0301-9322(98)00048-2
[22] Diaz-Goano, A distributed Lagrange multiplier/fictitious domain method for particulate flos, Journal of Computational Physics 192 pp 105– (2003) · Zbl 1047.76042 · doi:10.1016/S0021-9991(03)00349-8
[23] Wan, Fictitious boundary and moving mesh methods for the numerical simulation of rigid particulate flows, Journal of Computational Physics 222 pp 28– (2007) · Zbl 1216.76036 · doi:10.1016/j.jcp.2006.06.002
[24] Glowinski, A fictitious domain approach to the direct numerical simulation of incompressible viscous flow past moving rigid bodies: application to particulate flow, Journal of Computational Physics 169 pp 363– (2001) · Zbl 1047.76097 · doi:10.1006/jcph.2000.6542
[25] Hart, A three-dimensional computational analysis of fluid-structure interaction in the aortic valve, Journal of Biomechanics 36 pp 103– (2003) · doi:10.1016/S0021-9290(02)00244-0
[26] Stijnen, Evaluation of a fictitious domain method for predicting dynamic response of mechanical heart valves, Journal of Fluids and Structures 19 pp 835– (2004) · doi:10.1016/j.jfluidstructs.2004.04.007
[27] Nordsletten, Conservative and non-conservative arbitrary Lagrangian-Eulerian forms for ventricular flows, International Journal for Numerical Methods in Biomedical Engineering 56 pp 1457– (2008) · Zbl 1169.76036 · doi:10.1002/fld.1647
[28] Nordsletten, A non-conforming monolithic finite element method for problems of coupled mechanics, Journal of Computational Physics 20 pp 7571– (2010) · Zbl 1425.74162 · doi:10.1016/j.jcp.2010.05.043
[29] Girault, Finite Element Methods for Navier-Stokes Equations (1986) · Zbl 0585.65077 · doi:10.1007/978-3-642-61623-5
[30] Nobile F Numerical approximation of fluid-structure interaction problems with application to haemodynamics 2001
[31] Nordsletten, A preconditioner for the finite element approximation to the ALE Navier-Stokes equations, SIAM Journal on Scientific Computing 32 pp 521– · Zbl 1210.35180 · doi:10.1137/08072958X
[32] Oertel H Spiegel K Donisi S Modelling the Human Cardiac Fluid Mechanics 2006
[33] Hirt, An arbitrary Lagrangian-Eulerian computing method for all flow speeds, Journal of Computational Physics 14 pp 227– (1974) · Zbl 0292.76018 · doi:10.1016/0021-9991(74)90051-5
[34] Donea, Arbitrary Lagrangian-Eulerian methods, Encyclopedia of Computational Mechanics 1 (2004) · Zbl 0536.73062 · doi:10.1002/0470091355.ecm009
[35] Costa, Modeling cardiac mechanical properties in three dimensions, Philosophical Transactions of the Royal Society 359 pp 1233– (2001) · Zbl 0994.92013 · doi:10.1098/rsta.2001.0828
[36] Huyghe, The Porous medium finite element model of the beating left ventricle, American Journal of Physiology 262 pp H1256– (1992)
[37] Nash M Mechanics and material properties of the heart using an anatomically accurate mathematical model 1998
[38] Nash, Computational mechanics of the heart, Journal of Elasticity 61 pp 113– (2000) · Zbl 1071.74659 · doi:10.1023/A:1011084330767
[39] Nickerson, A model of cardiac cellular electromechanics, Philosophical Transactions of the Royal Society 359 pp 1159– (2001) · Zbl 0994.92015 · doi:10.1098/rsta.2001.0823
[40] Stevens, Ventricular mechanics in diastole: material parameter sensitivity, Journal of Biomechanics 36 pp 737– (2003) · doi:10.1016/S0021-9290(02)00452-9
[41] Stevens C An anatomically-based computational study of cardiac mechanics and myocardial infarction 2002
[42] Lemmon, Computational modeling of left heart diastolic function: examination of ventricular dysfunction, Journal of Elasticity 122 pp 297– (2000)
[43] Brezzi, Mixed finite elements for second order elliptic problems in three variables, Numerical Mathematics 51 pp 237– (1987) · Zbl 0631.65107 · doi:10.1007/BF01396752
[44] Gresho, Incompressible Flow and the Finite Element Method II, Isothermal Laminar Flow (1998) · Zbl 0941.76002
[45] Quarteroni, Numerical Approximation of Partial Differential Equations (1994)
[46] Zienkiewicz, The Finite Element Method (2000) · Zbl 0962.76056
[47] Dennis, Numerical Methods for Unconstrained Optimization and Nonlinear Equations (1996) · Zbl 0847.65038 · doi:10.1137/1.9781611971200
[48] Dennis, Numerical solutions for steady flow past a circular cylinder at Reynolds numbers up to 100, Journal of Fluid Mechanics 42 pp 471– (1970) · Zbl 0193.26202 · doi:10.1017/S0022112070001428
[49] Fornberg, A numerical study of steady viscous flow past a circular cylinder, Journal of Fluid Mechanics 98 pp 819– (1980) · Zbl 0428.76032 · doi:10.1017/S0022112080000419
[50] McCormick, Fluid-mechanics simulations of ventricular function under LVAD support, Conference: Medical Physics and Biomedical Engineering (2009)
[51] LeGrice, Laminar structure of the heart: ventricular myocyte arrangement and connective tissue architecture in the dog, American Journal of Physiology 269 pp H571– (1995)
[52] LeGrice, The architecture of the heart: a data-based model, Philosophical Transactions of the Royal Society 359 pp 1217– (2001) · Zbl 0997.92022 · doi:10.1098/rsta.2001.0827
[53] Rajagopal, Determining the finite elasticity reference state from a loaded configuration, International Journal for Numerical Methods in Engineering 72 pp 1434– (2007) · Zbl 1194.74015 · doi:10.1002/nme.2045
[54] Niederer, An improved numerical method for strong coupling of excitation and contraction models in the heart, Progress in Biophysics and Molecular Biology 96 pp 90– (2008) · doi:10.1016/j.pbiomolbio.2007.08.001
[55] Nordsletten, Coupling multi-physics models to cardiac mechanics, Progress in Biophysics and Molecular Biology (2009)
[56] Pantalos, Characterisation of an adult mock circulation for testing cardiac support devices, ASAIO 50 pp 37– (2004) · doi:10.1097/01.MAT.0000104818.70726.E6
[57] Kerckhoffs, Coupling of a 3D finite element model of cardiac ventricular mechanics to lumped systems models of the systemic and pulmonic circulation, Annals of Biomedical Engineering 35 pp 1– (2007) · doi:10.1007/s10439-006-9212-7
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.