×

Magnetohydrodynamic biorheological transport phenomena in a porous medium: A simulation of magnetic blood flow control and filtration. (English) Zbl 1217.92019

Summary: Application of magnetic fields to medical science is growing rapidly, with the development of novel magnetic pumps, hydromagnetic separation devices, etc. We study the dual control mechanisms of transverse magnetic field and porous media filtration on viscous convection heat transfer in a buoyancy-driven blood flow regime in a vertical pipe, as a model of a blood separation configuration. Non-Newtonian characteristics of the blood are modeled with the well-tested, thermodynamically rigorous micropolar model introduced by A. C. Eringen [Int. J. Eng. Sci. 18, 5–17 (1980; Zbl 0436.76006)]. Porous media effects are simulated with a Darcy-Forchheimer drag force model. The two-point boundary value problem is normalized and the resulting dimensionless linear momentum, angular momentum (Eringen micro-rotation) and energy conservation equations are solved by the Differential Transform Method (DTM). The convergence analysis elucidates that the DTM yields exceedingly accurate results, which are validated with a comparison with optimized fourth-order Runge-Kutta numerical quadrature. The influence of the micropolar vortex viscosity parameter, Eringen parameter (Er), Hartmann magnetohydrodynamic number \((Ha)\), aspect ratio \((A)\), Darcy number \((Da)\), heat generation/absorption parameter (\(\alpha \)) and Grashof number on the flow variables are studied in detail. The present study has important applications in magnetic field control of biotechnological (hemodynamic) processes, biomagnetic device technology, etc.

MSC:

92C05 Biophysics
76W05 Magnetohydrodynamics and electrohydrodynamics
92C35 Physiological flow

Citations:

Zbl 0436.76006
Full Text: DOI

References:

[1] Ghosh, Mathematical modelling of transient magnetohydrodynamic couple stress biofluid flow in a rotating channel, International Journal of Applied Mathematics and Mechanics 6 pp 23– (2010)
[2] Bég, Numerical study of heat transfer of a third grade viscoelastic fluid in non-Darcian porous media with thermophysical effects, Physica Scripta 77 pp 1– (2008) · Zbl 1162.76052
[3] Rees, Boundary layer flow of a micropolar fluid, International Journal of Engineering Science 34 (1) pp 113– (1996) · Zbl 0900.76021 · doi:10.1016/0020-7225(95)00058-5
[4] Bég, Numerical study of free convection magnetohydrodynamic heat and mass transfer from a stretching surface to a saturated porous medium with Soret and Dufour effects, Computational Materials Science 46 (1) pp 57– (2009) · doi:10.1016/j.commatsci.2009.02.004
[5] Ghosh, Hall effects on MHD flow in a rotating system with heat transfer characteristics, Meccanica Journal 44 pp 741– (2009) · Zbl 1258.76197 · doi:10.1007/s11012-009-9210-6
[6] Alexiou, Locoregional cancer treatment with magnetic drug targeting, Cancer Research 60 pp 6641– (2000)
[7] Carlton, Biomagnetic separation of contaminating host leukocytes from plasmodiuminfected erythrocytes, Experimental Parasitology 97 pp 111– (2001) · doi:10.1006/expr.2001.4594
[8] Haik, Development of magnetic device for cell separation, Journal of Magnetism and Magnetic Materials 194 pp 261– (1999) · doi:10.1016/S0304-8853(98)00559-9
[9] Oleson, Hyperthermia by magnetic induction: I. Physical characteristics of the technique, International Journal of Radiation Oncology (Biology and Physics) 8 pp 1747– (2001) · doi:10.1016/0360-3016(82)90297-8
[10] Fotiadis, Hydrodynamics of magnetic drug targeting, Journal of Biomechanics 35 pp 813– (2002) · doi:10.1016/S0021-9290(02)00034-9
[11] Schmia, A passive magnetically and hydrodynamically suspended rotary blood pump, Artificial Organs 33 pp 250– (2009) · doi:10.1111/j.1525-1594.2009.00715.x
[12] Ogulu, Hydromagnetic heat transfer to blood flow in the microcirculation, Jurnal Fizik Malaysia 17 (3) pp 135– (1996)
[13] Sharma, Finite element computations of two-dimensional arterial flow in the presence of a transverse magnetic field, International Journal for Numerical Methods in Fluids 20 pp 1153– (1995) · Zbl 0836.76051 · doi:10.1002/fld.1650201004
[14] Mustaphaa, Unsteady magnetohydrodynamic blood flow through irregular multi-stenosed arteries, Computers in Biology and Medicine 39 pp 896– (2009) · doi:10.1016/j.compbiomed.2009.07.004
[15] Tenforde, Magnetically induced electric fields and currents in the circulatory system, Progress in Biophysics and Molecular Biology 87 pp 279– (2005) · doi:10.1016/j.pbiomolbio.2004.08.003
[16] Nadeem, Magnetohydrodynamic peristaltic motion of a Sisko fluid in a symmetric or asymmetric channel, Physica A: Statistical Mechanics and its Applications 387 pp 347– (2008) · doi:10.1016/j.physa.2007.10.020
[17] Wang L Collins J Lee AP Design of programmable diffusion bioassays based on MHD microfluidic systems
[18] Frewer, The electrical conductivity of flowing blood, Biomedical Engineering 9 pp 552– (1974)
[19] Jaspard, Dielectric properties of blood: an investigation of temperature dependence, Physiological Measurement 23 pp 547– (2002) · doi:10.1088/0967-3334/23/3/306
[20] Ichioka, Biological effects of static magnetic fields on the microcirculatory blood flow in vivo: a preliminary report, Medical and Biological Engineering and Computing 36 pp 91– (1998) · doi:10.1007/BF02522863
[21] Zueco, Network numerical analysis of magneto-micropolar convection through a vertical circular non-Darcian porous medium conduit, Computational Materials Science 46 (4) pp 1028– (2009) · doi:10.1016/j.commatsci.2009.05.018
[22] Eringen, Theory of micropolar fluids, Journal of Applied Mathematics and Mechanics 16 pp 1– (1966) · Zbl 0145.21302
[23] Eringen, Simple microfluids, International Journal of Engineering Science 2 pp 205– (1964) · Zbl 0136.45003 · doi:10.1016/0020-7225(64)90005-9
[24] Bear, Dynamics of Fluids in Porous Media (1988) · Zbl 1191.76002
[25] Takhar, Computational analysis of coupled radiation convection dissipative flow in a porous medium using the Keller-Box implicit difference scheme, International Journal of Energy Research 22 pp 141– (1998) · doi:10.1002/(SICI)1099-114X(199802)22:2<141::AID-ER340>3.0.CO;2-F
[26] Rawat, Transient magneto-micropolar free convection heat and mass transfer through a non-darcy porous medium channel with variable thermal conductivity and heat source effects, Proceedings of IMechE, Part C-Journal of Mechanical Engineering Science 223 pp 2341– (2009) · doi:10.1243/09544062JMES1483
[27] Bég, NSM analysis of time-dependent nonlinear buoyancy-driven double-diffusive radiative convection flow in non-Darcy geological porous media, Acta Mechanica 202 pp 181– (2009) · Zbl 1171.76050 · doi:10.1007/s00707-008-0018-6
[28] Sutton, Engineering Magnetohydrodynamics (1965)
[29] Bég, Effects of transverse magnetic field, Prandtl number and Reynolds number on non-Darcy mixed convective flow of an incompressible viscous fluid past a porous vertical flat plate in saturated porous media, International Journal of Energy Research 21 pp 87– (1997) · doi:10.1002/(SICI)1099-114X(199701)21:1<87::AID-ER259>3.0.CO;2-7
[30] Hughes, The Electromagnetodynamics of Fluids (1966)
[31] Bég, Computational modeling of biomagnetic micropolar blood flow and heat transfer in a two-dimensional non-darcian porous medium, Meccanica Journal 43 (4) pp 391– (2008) · Zbl 1163.76454 · doi:10.1007/s11012-007-9102-6
[32] Peddieson, Boundary layer theory for a micropolar fluid, Recent Advances in Engineering Science 5 pp 405– (1970)
[33] Guram, Stagnation flows of micropolar fluids with strong and weak interactions, Computers and Mathematics with Applications 6 pp 213– (1980) · Zbl 0434.76013 · doi:10.1016/0898-1221(80)90030-9
[34] Kang, The effect of microstructure on the rheological properties of blood, Bulletin of Mathematical Biology 38 pp 135– (1976) · Zbl 0326.92009 · doi:10.1007/BF02471753
[35] Ahmadi, Self-similar solution of imcompressible micropolar boundary layer flow over a semi-infinite plate, International Journal of Engineering Science 14 pp 639– (1976) · Zbl 0329.76041 · doi:10.1016/0020-7225(76)90006-9
[36] Zhou, Differential Transformation and its Applications for Electrical Circuits (1986)
[37] Chen, Solving partial differential equations by two-dimensional differential transform method, Applied Mathematics Computation 106 pp 171– (1999) · Zbl 1028.35008 · doi:10.1016/S0096-3003(98)10115-7
[38] Kurnaz, n-dimensional differential transformation method for solving linear and nonlinear PDE’s, Journal of Computational and Applied Mathematics 82 pp 369– (2005)
[39] Abdel-Halim Hassan, Comparison differential transformation technique with Adomian decomposition method for linear and nonlinear initial value problems, Chaos, Solitons and Fractals 36 pp 53– (2008) · Zbl 1152.65474 · doi:10.1016/j.chaos.2006.06.040
[40] Rashidi, Using differential transform method and the padé approximant for solving MHD flow in a laminar liquid film from a horizontal stretching surface, Mathematical Problems in Engineering 16 pp 1– (2010) · Zbl 1191.76108 · doi:10.1155/2010/491319
[41] Liao, Series in Modern Mechanics and Mathematics, in: Beyond Perturbation: Introduction to the Homotopy Analysis Method (2003) · Zbl 1051.76001 · doi:10.1201/9780203491164
[42] Adomian, Solving Frontier Problems of Physics: The Decomposition Method (1994) · Zbl 0802.65122 · doi:10.1007/978-94-015-8289-6
[43] He, Variational iteration method-a kind of nonlinear analytical technique: some examples, International Journal of Non-linear Mechanics 34 pp 699– (1999) · Zbl 1342.34005 · doi:10.1016/S0020-7462(98)00048-1
[44] He, Homotopy perturbation technique, Computer Methods in Applied Mechanics and Engineering 178 pp 257– (1999) · Zbl 0956.70017 · doi:10.1016/S0045-7825(99)00018-3
[45] Bhargava, Element Free Galerkin Method (EFGM) simulation of radiative hydromagnetic micropolar flow and heat transfer from a stretching sheet to a porous medium with Joule heating, International Journal of Computational Methods in Engineering Science and Mechanics (2010)
[46] Bég, Transient Couette flow in a rotating non-Darcian porous medium parallel plate configuration: network simulation method solutions, Acta Mechanica 200 pp 129– (2008) · Zbl 1155.76415 · doi:10.1007/s00707-008-0040-8
[47] Bég, Magnetohydrodynamic convection flow from a sphere to a non-Darcian porous medium with heat generation or absorption effects: network simulation, International Journal of Thermal Sciences 48 (5) pp 913– (2009) · doi:10.1016/j.ijthermalsci.2008.07.002
[48] Keltner, Magneto-hydrodynamics of blood flow, Magnetic Resonance in Medicine 16 pp 139– (1990) · doi:10.1002/mrm.1910160113
[49] Skalak, Effect of hematocrit and rouleaux on apparent viscosity in capillaries, Biorheology 9 pp 67– (1972)
[50] Rashidi, New analytical method for solving Burgers’ and nonlinear heat transfer equations and comparison with HAM, Computer Physics Communications 180 pp 1539– (2009) · doi:10.1016/j.cpc.2009.04.009
[51] Rashidi, Traveling wave solutions of WBK shallow water equations by differential transform method, Advances in Theoretical and Applied Mechanics 3 (6) pp 263– (2010) · Zbl 1217.35167
[52] Rashidi, A semi-analytical solution of micro polar flow in a porous channel with mass injection by using differential transform method, Nonlinear Analysis: Modelling and Control 15 (3) pp 341– (2010) · Zbl 1371.76138
[53] Rashidi, The modified differential transform method for investigating nano boundary-layers over stretching surfaces, International Journal of Numerical Methods for Heat and Fluid Flow, under review
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.