×

Embedding theorems and integration operators on Bergman spaces with rapidly decreasing weights. (English) Zbl 1215.46019

Let \(\mathbb{D}\) be the unit disc of the complex plane, \(dm= dxdy/\pi\) the normalized area measure on \(\mathbb{D}\). Let \(w(r)\) for \(0< r< 1\) be positive and integrable in \((0,1)\), and extend \(w\) to \(\mathbb{D}\) by \(w(z)= w(|z|)\) for \(z\in\mathbb{D}\). Then, for \(0< p<\infty\), the weighted Bergman space \(A^p(w)\) is the space of functions \(f\) analytic on \(\mathbb{D}\) for which
\[ \| f\|^p_{A^p(w)}= \int_{\mathbb{D}} |f(z)|^p w(z)\,dm(z)< \infty. \]
The authors study Carleson measures and certain integration operators on \(A^p(w)\) for weights \(w\) in a certain class \(W\) of weights. \(W\) is defined by several technical conditions which will not be repeated here, but the class includes the exponential type weights
\[ w_{\gamma,\alpha}(r)= (1-r)^\gamma\exp\Biggl\{{-c\over (1-r)^\alpha}\Biggr\} \]
for \(\gamma\geq 0\), \(\alpha> 0\), and \(c> 0\), as well as “double exponential” weights.
Let \(X\) be a space of analytic functions on \(\mathbb{D}\). A positive Borel measure \(\mu\) in \(\mathbb{D}\) is called \(q\)-Carleson for \(X\) if the embedding \(X\subset L^q(\mu)\), \(0< q<\infty\), is continuous. The authors obtain a complete description of the \(q\)-Carleson measures for \(A^p(w)\), \(0< p,q<\infty\), for weights \(w\in W\). In addition, the following problem is considered. Let \(g\) be a fixed function analytic on \(\mathbb{D}\), and define the operator \((T_g f)(z)= \int^z_0 f(w)g'(w)\,dw\). The authors completely describe the boundedness and compactness of \(T_g: A^p(w)\to A^q(w)\), \(0< p,q<\infty\), for weights \(w\in W\).
Finally, for \(0< p<\infty\), \(H\) a separable Hilbert space, let \(S_p(H)\) denote the Schatten \(p\)-class of operators on \(H\). This is the class of compact operators on \(H\) whose sequence of singular numbers \(\lambda_n\) belong to \(\ell^p\), the \(p\)-summable sequence space. The authors characterize the \(g\) analytic in \(\mathbb{D}\) for which \(T_g\in S_p(A^2(w))\), for \(w\in W\).

MSC:

46E15 Banach spaces of continuous, differentiable or analytic functions
30H20 Bergman spaces and Fock spaces
Full Text: DOI

References:

[1] Aleman, A., A class of integral operators on spaces of analytic functions, (Topics in Complex Analysis and Operator Theory (2007), Univ. Málaga: Univ. Málaga Málaga), 3-30 · Zbl 1203.30060
[2] Aleman, A.; Cima, J. A., An integral operator on \(H^p\) and Hardy’s inequality, J. Anal. Math., 85, 157-176 (2001) · Zbl 1061.30025
[3] Aleman, A.; Siskakis, A., An integral operator on \(H^p\), Complex Var., 28, 149-158 (1995) · Zbl 0837.30024
[4] Aleman, A.; Siskakis, A., Integration operators on Bergman spaces, Indiana Univ. Math. J., 46, 337-356 (1997) · Zbl 0951.47039
[5] Arcozzi, N.; Rochberg, R.; Sawyer, E., Carleson measures for analytic Besov spaces, Rev. Mat. Iberoamericana, 18, 443-510 (2002) · Zbl 1059.30051
[6] Borichev, A.; Dhuez, R.; Kellay, K., Sampling and interpolation in large Bergman and Fock spaces, J. Funct. Anal., 242, 563-606 (2007) · Zbl 1115.46019
[7] Carleson, L., An interpolation problem for bounded analytic functions, Amer. J. Math., 80, 921-930 (1958) · Zbl 0085.06504
[8] Carleson, L., Interpolation by bounded analytic functions and the corona problem, Ann. of Math., 76, 547-559 (1962) · Zbl 0112.29702
[9] Dostanić, M., Unboundedness of the Bergman projections on \(L^p\) spaces with exponential weights, Proc. Edinb. Math. Soc., 47, 111-117 (2004) · Zbl 1077.47020
[10] Dostanić, M., Integration operators on Bergman spaces with exponential weights, Rev. Mat. Iberoamericana, 23, 421-436 (2007) · Zbl 1146.47020
[11] Duren, P. L., Extension of a theorem of Carleson, Bull. Amer. Math. Soc., 75, 143-146 (1969) · Zbl 0184.30503
[12] Duren, P. L., Theory of \(H^p\) Spaces (2000), Academic Press: Academic Press New York, London: Dover: Academic Press: Academic Press New York, London: Dover Mineola, New York, reprint · Zbl 0215.20203
[13] P. Galanopoulos, D. Girela, J.A. Peláez, Multipliers and integration operators on Dirichlet spaces, Trans. Amer. Math. Soc., in press, available at http://webpersonal.uma.es/ JAPELAEZ/preprints.html.; P. Galanopoulos, D. Girela, J.A. Peláez, Multipliers and integration operators on Dirichlet spaces, Trans. Amer. Math. Soc., in press, available at http://webpersonal.uma.es/ JAPELAEZ/preprints.html. · Zbl 1223.30018
[14] Girela, D.; Peláez, J. A., Carleson measures, multipliers and integration operators for spaces of Dirichlet type, J. Funct. Anal., 241, 334-358 (2006) · Zbl 1115.46020
[15] Kriete, T. L.; MacCluer, B. M., Composition operators on large weighted Bergman spaces, Indiana Univ. Math. J., 41, 755-788 (1992) · Zbl 0772.30043
[16] Lin, P.; Rochberg, R., Trace ideal criteria for Toeplitz and Hankel operators on the weighted Bergman spaces with exponential type weights, Pacific J. Math., 173, 127-146 (1996) · Zbl 0853.47015
[17] Luecking, D. H., Forward and reverse inequalities for functions in Bergman spaces and their derivatives, Amer. J. Math., 107, 85-111 (1985) · Zbl 0584.46042
[18] Luecking, D. H., Trace ideal criteria for Toeplitz operators, J. Funct. Anal., 73, 345-368 (1987) · Zbl 0618.47018
[19] Luecking, D. H., Embedding derivatives of Hardy spaces into Lebesgue spaces, Proc. Lond. Math. Soc., 63, 595-619 (1991) · Zbl 0774.42011
[20] Luecking, D. H., Embedding theorems for spaces of analytic functions via Khinchine’s inequality, Michigan Math. J., 40, 333-358 (1993) · Zbl 0801.46019
[21] Oleinik, V. L., Embedding theorems for weighted classes of harmonic and analytic functions, J. Soviet. Math., 9, 228-243 (1978) · Zbl 0396.31001
[22] Oleinik, V. L.; Perelman, G. S., Carleson’s imbedding theorem for weighted Bergman space, Mat. Zametki. Mat. Zametki, Math. Notes, 47, 577-581 (1990), (in Russian); translation in · Zbl 0746.46023
[23] Pavlović, M., On harmonic conjugates with exponential mean growth, Czechoslovak Math. J., 49, 124, 733-742 (1999) · Zbl 1009.30031
[24] Pavlović, M.; Peláez, J. A., An equivalence for weighted integrals of an analytic function and its derivative, Math. Nachr., 281, 1612-1623 (2008) · Zbl 1155.30018
[25] Rättyä, J., Integration operator acting on Hardy and weighted Bergman spaces, Bull. Austral. Math. Soc., 75, 431-446 (2007) · Zbl 1197.30018
[26] Siskakis, A., Weighted integrals and conjugate functions in the unit disk, Acta Sci. Math. (Szeged), 66, 651-664 (2000) · Zbl 0994.46008
[27] Siskakis, A., Volterra operators on spaces of analytic functions - a survey, (Proceedings of the First Advanced Course in Operator Theory and Complex Analysis (2006), Univ. Sevilla Secr. Publ.: Univ. Sevilla Secr. Publ. Seville), 51-68 · Zbl 1134.47024
[28] Zhu, K., Operator Theory in Function Spaces, Math. Surveys Monogr., vol. 138 (2007), American Mathematical Society: American Mathematical Society Providence, RI · Zbl 1123.47001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.