×

Commutativity and skew-commutativity conditions with generalized derivations. (English) Zbl 1214.16035

Let \(R\) be a prime ring with \(\text{char}(R)\neq 2\), and let \(U\) and \(C\) denote respectively the right Utumi quotient ring of \(R\) and the extended centroid of \(R\). Let \(f(x_1,\dots,x_n)\) be a polynomial over \(C\), and define \(f(R)\) to be \(\{f(r_1,r_2,\dots,r_n)\mid r_i\in R\}\). Let \(F\) be a non-zero generalized derivation on \(R\).
The authors show that if there exists a fixed \(k\geq 1\) and a noncentral Lie ideal \(L\) such that \([F(u),F(v)]_k=0\) for all \(u,v\in L\), or if \(f(x_1,\dots,x_n)\) is a noncentral polynomial and \([F(u),F(v)]=0\) for all \(u,v\in f(R)\), then \(R\) is an order in a central simple algebra of dimension at most 4 over its center and there exist \(a,b\in U\) such that \(a-b\in C\) and \(F(x)=ax+xb\) for all \(x,y\in R\).
Denoting the skew commutator \(xy+yx\) by \(x\circ y\) as usual, they show that if \(F(u)\circ F(v)=0\) for all \(u,v\in f(R)\), then \(f(x_1,\dots,x_n)\) is central valued on \(R\); and they also prove that if \(F(u)\circ F(v)=u\circ v\) for all \(u,v\in f(R)\), then either \(f(x_1,\dots,x_n)\) is central valued on \(R\) or there exists \(\alpha\in C\) such that \(F(x)=\alpha x\) and \(\alpha^2x=x\) for all \(x\in R\).

MSC:

16W25 Derivations, actions of Lie algebras
16N60 Prime and semiprime associative rings
16R50 Other kinds of identities (generalized polynomial, rational, involution)
16W10 Rings with involution; Lie, Jordan and other nonassociative structures
16U70 Center, normalizer (invariant elements) (associative rings and algebras)
16U80 Generalizations of commutativity (associative rings and algebras)

References:

[1] Ashraf M., Southeast Asian Bull. Math. 29 pp 669–
[2] Beidar K. I., Monographs and Textbooks in Pure and Applied Mathematics 196, in: Rings with Generalized Identities (1996)
[3] Bell H. E., Math. J. Okayama Univ. 49 pp 139–
[4] DOI: 10.1007/BF02779669 · Zbl 0631.16015 · doi:10.1007/BF02779669
[5] DOI: 10.1090/S0002-9939-1988-0947646-4 · doi:10.1090/S0002-9939-1988-0947646-4
[6] DOI: 10.1007/BF02844726 · Zbl 0903.16017 · doi:10.1007/BF02844726
[7] DOI: 10.4153/CMB-1978-040-0 · Zbl 0395.16029 · doi:10.4153/CMB-1978-040-0
[8] Herstein I. N., Topics in Ring Theory (1969) · Zbl 0232.16001
[9] Huang S., Int. J. Math. Math. Sci.
[10] DOI: 10.1080/00927879808826190 · Zbl 0899.16018 · doi:10.1080/00927879808826190
[11] DOI: 10.1007/BF01670115 · Zbl 0423.16011 · doi:10.1007/BF01670115
[12] DOI: 10.1090/conm/124/1144031 · doi:10.1090/conm/124/1144031
[13] DOI: 10.1090/S0002-9939-1993-1132851-9 · doi:10.1090/S0002-9939-1993-1132851-9
[14] DOI: 10.1090/S0002-9939-96-03351-5 · Zbl 0859.16031 · doi:10.1090/S0002-9939-96-03351-5
[15] Lee T. K., Bull. Inst. Math. Acad. Sinica 20 pp 27–
[16] Lee T. K., Taiwanese J. Math. 1 pp 333–
[17] DOI: 10.1080/00927879908826682 · Zbl 0946.16026 · doi:10.1080/00927879908826682
[18] DOI: 10.1016/0021-8693(69)90029-5 · Zbl 0175.03102 · doi:10.1016/0021-8693(69)90029-5
[19] DOI: 10.1090/S0002-9939-1957-0095863-0 · doi:10.1090/S0002-9939-1957-0095863-0
[20] Rowen L., Pure and Applied Mathematics 84, in: Polynomial Identities in Ring Theory (1980) · Zbl 0461.16001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.