×

Effects of natural convection within the anterior chamber on the ocular heat transfer. (English) Zbl 1208.92018

Summary: The aqueous humor inside the anterior chamber has been known to be in constant circulation. It is widely accepted that this flow is caused mainly by the thermal gradient inside the anterior chamber, which induces buoyancy. This generates natural convection inside the anterior chamber, which may affect the overall heat transfer inside the human eye. Nevertheless, most of the studies in the past that investigated the temperature distribution inside the human eye have not included this into their mathematical model. This study seeks to investigate the significance of natural convection inside the anterior chamber on the heat transfer inside the human eye. For this purpose, a two-dimensional model of the anterior chamber is developed using the boundary element method.

MSC:

92C35 Physiological flow
80A20 Heat and mass transfer, heat flow (MSC2010)
65N38 Boundary element methods for boundary value problems involving PDEs
93C30 Control/observation systems governed by functional relations other than differential equations (such as hybrid and switching systems)
Full Text: DOI

References:

[1] Aihara, Aqueous humor dynamics in mice, Investigative Ophthalmology and Visual Science 44 pp 5168– (2003) · doi:10.1167/iovs.03-0504
[2] Türk, Untersuckungen über eine Strömung in der vorderen Augenkammer, von Graefes, Archives of Ophthalmology 64 pp 481– (1906)
[3] Ethier, Ocular biomechanics and biotranspor, Annual Review of Biomedical Engineering 6 pp 249– (2004) · doi:10.1146/annurev.bioeng.6.040803.140055
[4] Maurice, The Von Sallmann lecture 1996: an ophthalmological explanation of REM sleep, Experimental Eye Research 66 pp 139– (1998) · doi:10.1006/exer.1997.0444
[5] Fitt, Fluid mechanics of the human eye: aqueous humor flow in the anterior chamber, Bulletin of Mathematical Biology 68 pp 53– (2006) · Zbl 1334.92104 · doi:10.1007/s11538-005-9015-2
[6] Kaufman, Adler’s Physiology of the Eye: Clinical Application (2003)
[7] Canning, Fluid flow in the anterior chamber of a human eye, IMA Journal of Mathematics Applied in Medicine and Biology 19 pp 31– (2002) · Zbl 1013.92014 · doi:10.1093/imammb/19.1.31
[8] Heys, A Boussinesq model of natural convection in the human eye and the formation of Krukenberg’s spindle, Annals of Biomedical Engineering 30 pp 392– (2002) · doi:10.1114/1.1477447
[9] Scott, A finite Emodel of heat transport in the human eye, Physics in Medicine and Biology 33 pp 227– (1988) · doi:10.1088/0031-9155/33/2/003
[10] Okuno, Thermal effect of IR radiation on the eye: A study based on a model, The Annals of Occupational Hygiene 35 pp 1– (1991) · doi:10.1093/annhyg/35.1.1
[11] Amara, Numerical investigations on thermal effects of laser ocular media interaction, International Journal of Heat and Mass Transfer 38 pp 2479– (1995) · Zbl 0924.73194 · doi:10.1016/0017-9310(94)00353-W
[12] Ridouane, Numerical computation of the temperature evolution in the human eye, Heat Transfer Research 37 pp 607– (2006) · doi:10.1615/HeatTransRes.v37.i7.30
[13] Mapstone, Measurement of corneal temperature, Experimental Eye Research 7 pp 237– (1968) · doi:10.1016/S0014-4835(68)80073-9
[14] Efron, Ocular surface temperature, Current Eye Research 8 pp 901– (1989)
[15] Wyatt, Ocular pharmacokinetics and convectional flow: evidence from spatio-temporal analysis of mydriasis, Journal of Ocular Pharmacology and Therapeutics 12 pp 441– (1996) · doi:10.1089/jop.1996.12.441
[16] Kumar, Numerical solution of ocular fluid dynamics in a rabbit eye: Parametric effects, Annals of Biomedical Engineering 34 pp 530– (2006) · doi:10.1007/s10439-005-9048-6
[17] El-Shahed, On the fluid flow in the anterior chamber of a human eye with slip velocity, International Communications in Heat and Mass Transfer 32 pp 1104– (2005) · doi:10.1016/j.icheatmasstransfer.2004.11.004
[18] Avtar, Modelling the flow of aqueous humor in anterior chamber of the eye, Applied Mathematics and Computation 181 pp 1336– (2006) · Zbl 1101.92019 · doi:10.1016/j.amc.2006.03.002
[19] Wyatt, Modelling transport in the anterior segment of the eye, Optometry and Vision Science 81 pp 271– (2004) · doi:10.1097/00006324-200404000-00014
[20] Ooi, A boundary element model of the human eye undergoing laser-thermokeratoplasty, Computers in Biology and Medicine 38 pp 727– (2008) · doi:10.1016/j.compbiomed.2008.04.003
[21] Ooi, A boundary element model for investigating the effects of eye tumor on the temperature distribution inside the human eye, Computers in Biology and Medicine 39 pp 667– (2009) · doi:10.1016/j.compbiomed.2009.04.010
[22] Charles, Dimensions of the human eye relevant to radiation protection, Physics in Medicine and Biology 20 (2) pp 202– (1975) · doi:10.1088/0031-9155/20/2/002
[23] Fontana, Volume and dof the anterior chamber of the normal aging human eye, Archives of Ophthalmology 98 (10) pp 1803– (1980) · doi:10.1001/archopht.1980.01020040655013
[24] Fasel, Investigation of the stability of boundary layers by a finite difference model of the Navier-Stokes equations, Journal of Fluid Mechanics 78 pp 355– (1976) · Zbl 0404.76041 · doi:10.1017/S0022112076002486
[25] Škerget, Boundary-domain integral method using a velocity-vorticity formulation, Engineering Analysis with Boundary Elements 15 pp 359– (1995) · doi:10.1016/0955-7997(95)00036-N
[26] Ang, A Beginner’s Course in Boundary Element Methods (2007)
[27] Nardini, A new approach in solid mechanics by an alternative boundary element procedure, International Journal of Soil Dynamics and Earthquake Engineering 2 pp 228– (1983) · doi:10.1016/0261-7277(83)90040-2
[28] Ooi EH Studies of ocular heat transfer using the boundary element method 2009
[29] Incropera, Fundamentals of Heat and Mass Transfer (2002)
[30] Lagendijk, A mathematical model to calculate temperature distributions in human and rabbit eyes during hyperthermic treatment, Physics in Medicine and Biology 27 pp 1301– (1982) · doi:10.1088/0031-9155/27/11/001
[31] Mori, Efficacy and safety of infrared warming of the eyelids, Cornea 18 pp 188– (1999) · doi:10.1097/00003226-199903000-00008
[32] Kocak, Variability in the measurement of corneal temperature using noncontact infrared thermometer, Ophthalmologica 213 pp 345– (1999) · doi:10.1159/000027452
[33] Morgan, Potential applications of ocular thermography, Optometry and Vision Science 70 pp 568– (1993) · doi:10.1097/00006324-199307000-00008
[34] Mori, Use of high-speed, high-resolution thermography to evaluate the tear film layer, American Journal of Ophthalmology 124 pp 729– (1997) · doi:10.1016/S0002-9394(14)71689-7
[35] Ooi, Image Modeling of the Human Eye pp 269– (2008)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.