×

Global weak solutions of the fractional Landau-Lifshitz-Maxwell equation. (English) Zbl 1197.35304

Summary: The fractional Landau-Lifshitz-Maxwell equation is considered. We show the global existence of suitable weak solutions by the Galerkin method and the vanishing viscosity method. The main difficulties in this study are due to the loss of compactness of this system and the fact that the nonlinear term is nonlocal and of the same order of the equation. To overcome these difficulties, we introduce the commutator estimates and some cancellation properties to this equation, which prove to be proper tools in the study of Landau-Lifshitz type equations.

MSC:

35R11 Fractional partial differential equations
35Q61 Maxwell equations
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
Full Text: DOI

References:

[1] Alougest, F.; Soyeur, A., On global weak solutions for Landau-Lifshitz equations: Existence and nonuniqueness, Nonlinear Anal., 19, 11, 1071-1084 (1992) · Zbl 0788.35065
[2] Aubin, J. P., Un theoreme de compacite, C. R. Acad. Sci., 256, 5042-5044 (1963) · Zbl 0195.13002
[3] Böttcher, C. J.F., Theory of Electric Polarization (1952), Elsevier: Elsevier New York · Zbl 0049.26703
[4] Carbou, G., Regularity for critical points of a nonlocal energy, Calc. Var., 5, 409-433 (1997) · Zbl 0889.58022
[5] Coifman, R. R.; Meyer, Y., Nonlinear harmonic analysis, operator theory and P.D.E., (Beijing Lectures in Harmonic Analysis (1986), Princeton University Press), 3-45 · Zbl 0623.47052
[6] Constantin, P., On the Euler equations of incompressible fluids, Bull. Amer. Math. Soc., 44, 4, 603-621 (2007) · Zbl 1132.76009
[7] Ding, S.; Guo, B.; Lin, J.; Zeng, M., Global existence of weak solutions for Landau-Lifshitz-Maxwell equations, Discrete Contin. Dyn. Syst., 17, 4, 867-890 (2007) · Zbl 1157.35109
[8] Ding, S.; Wang, C., Finite time singularity of the Landau-Lifshitz-Gilbert equation, Int. Math. Res. Not., 2007 (2007), Article ID rnm012, 25 pages · Zbl 1130.35304
[9] García-Cervera, C. J., Structure of the Bloch wall in multilayers, Proc. R. Soc. A, 461, 1911-1926 (2005) · Zbl 1139.82344
[10] Gilbert, T. L., A Lagrangian formulation of gyromagnetic equation of the magnetization field, Phys. Rev., 100, 1243-1255 (1955)
[11] Greenberg, J. M.; MacCamy, R. C.; Coffman, C. V., On the long-time behavior of ferroelectric systems, Phys. D, 134, 362-383 (1999) · Zbl 0980.78008
[12] Guo, B.; Ding, S., Landau-Lifshitz Equations. Frontiers of Research with the Chinese Academy of Sciences, vol. 1 (2008), World Scientific: World Scientific Singapore · Zbl 1158.35096
[13] Guo, B.; Hong, M., The Landau-Lifshitz equation of the ferromagnetic spin chain and harmonic maps, Calc. Var., 1, 311-334 (1993) · Zbl 0798.35139
[14] Guo, B.; Su, F., Global weak solutions for the Landau-Lifshitz-Maxwell equation in three space dimensions, J. Math. Anal. Appl., 211, 326-346 (1997) · Zbl 0877.35122
[15] Habib, A.; Kamel, H., Global existence and regularity of solutions to a system of nonlinear Maxwell equations, J. Math. Anal. Appl., 286, 51-63 (2003) · Zbl 1039.35122
[16] Kato, T., Liapunov Functions and Monotonicity in the Navier-Stokes Equations, Lecture Notes in Math., vol. 1450 (1990), Springer-Verlag: Springer-Verlag Berlin · Zbl 0727.35107
[17] Kato, T.; Ponce, G., Commutator estimates and the Euler and Navier-Stokes equations, Comm. Pure Appl. Math., XLI, 891-907 (1988) · Zbl 0671.35066
[18] Kenig, C.; Ponce, G.; Vega, L., Well-posedness of the initial value problem for the Korteweg-de Vries equation, J. Amer. Math. Soc., 4, 323-347 (1991) · Zbl 0737.35102
[19] Kenig, C.; Ponce, G.; Vega, L., Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle, Comm. Pure Appl. Math., 46, 4, 453-620 (1993) · Zbl 0808.35128
[20] Landau, L. D.; Lifshitz, E. M., Electrodynamics of Continuous Media (1969), Pergamon Press: Pergamon Press Oxford · Zbl 0122.45002
[21] Landau, L. D.; Lifshitz, E. M., On the theory of the dispersion of magnetic permeability in ferromagnetic bodies, Phys. Z. Sowj.. ((1965), Pergamon Press: Pergamon Press New York), 8, 101-114 (1935), reproduced in: Collected Papers of L.D. Landau · Zbl 0012.28501
[22] Kohn, R. V.; Slastikov, V. V., Effective dynamics for ferromagnetic thin films: a rigorous justification, Proc. R. Soc. A, 461, 143-154 (2005) · Zbl 1145.82358
[23] Lin, F.; Wang, C., The Analysis of Harmonic Maps and Their Heat Flows (2008), World Scientific · Zbl 1203.58004
[24] Lin, J.; Ding, S., Smooth solution to the one-dimensional inhomogeneous non-automorphic Landau-Lifshitz equation, Proc. R. Soc. A, 462, 2397-2413 (2006) · Zbl 1149.35406
[25] Lions, J. L., Quelques methodes de resolution des problemes aux limits non linéaires (1969), Dunod: Dunod Paris · Zbl 0189.40603
[26] Liu, X., Partial regularity for Landau-Lifshitz system of ferromagnetic spin chain, Calc. Var., 20, 153-173 (2004) · Zbl 1058.58008
[27] Pu, X.; Guo, B.; Zhang, J., Global weak solutions to the 1-D fractional Landau-Lifshitz equation, Discrete Contin. Dyn. Syst. Ser. B, 14, 1, 199-207 (2010) · Zbl 1197.35305
[28] Shatah, J.; Zeng, C., Schrödinger maps and anti-ferromagnetic chains, Comm. Math. Phys., 262, 299-315 (2006) · Zbl 1104.58007
[29] Siman, J., Nonhomogeneous viscous incompressible fluids existence of velocity, density and pressure, SIAM J. Math. Anal., 21, 5, 1039-1117 (1990) · Zbl 0702.76039
[30] Simon, J., Compact sets in space \(L^p(0, T; B)\), Ann. Math. Pura Appl., 146, 65-96 (1987) · Zbl 0629.46031
[31] Stein, E. M., Singular Integrals and Differentiability Properties of Functions (1970), Princeton University Press: Princeton University Press Princeton, NJ · Zbl 0207.13501
[32] Tarasov, V. E., Fractional Heisenberg equation, Phys. Lett. A, 372, 2984-2988 (2008) · Zbl 1220.81097
[33] Temam, R., Infinite-Dimensional Dynamical Systems in Mechanics and Physics (1998), Springer-Verlag
[34] Visintin, A., Maxwell equations with vector hysteresis, Arch. Ration. Mech. Anal., 175, 1, 1-37 (2005) · Zbl 1145.78003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.