×

Generalized \(Q\)-functions and \(UC\) hierarchy of \(B\)-type. (English) Zbl 1195.05080

A generalization of the Schur \(Q\)-function is introduced. This generalization, called generalized \(Q\)-function, is indexed by any pair of strict partitions, and can be expressed by the Pfaffian. A connection to the theory of integrable systems is clarified. Firstly, the bilinear identities satisfied by the generalized \(Q\)-function are given and proved to be equivalent to a system of partial differential equations of infinite order. The system is called the \(UC\) hierarchy of \(B\)-type(\(BUC\) hierarchy). Secondly, the aigebraic structure of the \(BUC\) hierarchy is investigated from the representation theoretic viewpoint. Some new kind of the boson-fermion correspondence is established, and a representation of an infinite dimensional Lie algebra, denoted by \({\frac go}_{2\infty}\), is obtained. The bilinear identities are translated to the language of neutral fermions, which turn out to characterize a \(G\)-orbit of the vacuum vector, where \(G\) is the group corresponding to \({\frac go}_{2\infty}\).

MSC:

05E05 Symmetric functions and generalizations
05E10 Combinatorial aspects of representation theory
17B80 Applications of Lie algebras and superalgebras to integrable systems
37Kxx Dynamical system aspects of infinite-dimensional Hamiltonian and Lagrangian systems
Full Text: DOI

References:

[1] E. Date, M. Kashiwara and T. Miwa, Transformation groups for soliton equations. II. Vertex operators and \(\tau\) functions, Proc. Japan Acad. \Vec57A (1981), 387-392. · Zbl 0538.35066 · doi:10.3792/pjaa.57.387
[2] E. Date, M. Jimbo, M. Kashiwara and T. Miwa, Transformation groups for soliton equations. IV. A new hierarchy of soliton equations of KP-type, Physica \Vec4D (1982), 343-365. · Zbl 0571.35100 · doi:10.1016/0167-2789(82)90041-0
[3] E. Date, M. Kashiwara, M. Jimbo and T. Miwa, Transformation groups for soliton equations in, Nonlinear Integrable Systems : Classical Theory and Quantum Theory (Kyoto, 1981) , World Sci., Singapore (1983), 39-119. · Zbl 0571.35098
[4] R. Hirota, Soliton Solutions to the BKP Equations. I. The Pfaffian Technique, J. Phys. Soc. Japan \Vec58 (1989), 2285-2296. · doi:10.1143/JPSJ.58.2285
[5] R. Hirota, The Direct Method in Soliton Theory , Cambridge Tracts in Math. \Vec155, Cambridge Univ. Press, Cambridge, 2004. · Zbl 1099.35111
[6] P. N. Hoffman and J. F. Humphreys, Projective Representations of the Symmetric Groups , Oxford Univ. Press, Oxford, 1992. · Zbl 0777.20005
[7] M. Jimbo and T. Miwa, Soliton equations and infinite dimensional Lie algebras, Publ. RIMS, Kyoto Univ. \Vec19 (1983), 943-1001. · Zbl 0557.35091 · doi:10.2977/prims/1195182017
[8] M. Jimbo, T. Miwa and E. Date, Solitons\(:\) Differential Equations, Symmetries and Infinite Dimensional Algebras , Cambridge Tracts in Math. \Vec135, Cambridge Univ. Press, Cambridge, 2000. · Zbl 0986.37068
[9] V. G. Kac, Infinite dimensional Lie algebras , 3rd ed., Cambridge Univ. Press, Cambridge, 1994. · Zbl 0929.17023
[10] V. G. Kac and A. K. Raina, Bombay lectures on highest weight representations , World Sci., Singapore, 1987. · Zbl 0668.17012
[11] V. G. Kac and J. van de Leur, The geometry of spinors and the multicomponent BKP and DKP hierarchies in, The bispectral problem ( Montreal, 1997 ), CRM Proc. Lect. Notes \Vec14, American Mathematical Society, Providence (1998), 159-202. · Zbl 0924.35114
[12] K. Koike, On the decomposition of tensor products of the representations of the classical groups: By means of the universal characters, Adv. Math. \Vec74 (1989), 57-86. · Zbl 0681.20030 · doi:10.1016/0001-8708(89)90004-2
[13] J. van de Leur, The \(n\)-th Reduced BKP Hierarchy, the String Equation and \(BW_1+\infty\)-Constraints, Acta Appl. Math. \Vec44 (1996), 185-206. · Zbl 0866.17017 · doi:10.1007/BF00116521
[14] I. G. Macdonald, Symmetric functions and Hall polynomials , 2nd ed., Oxford Univ. Press, Oxford, 1995. · Zbl 0824.05059
[15] E. M. Rains, Correlation functions for symmetrized increasing subsequences, \Vec 2000, anXiv:math/0006097v1.
[16] M. Sato, Soliton equations as dynamical systems on an infinite dimensional Grassmann manifold, Kokyuroku RIMS, Kyoto Univ. \Vec439 (1981), 30-46. · Zbl 0507.58029
[17] J. R. Stembridge, Shifted tableaux and the projective representations of symmetric groups, Adv. Math. \Vec74 (1989), 87-134. · Zbl 0677.20012 · doi:10.1016/0001-8708(89)90005-4
[18] T. Tsuda, Universal characters and an extension of the KP hierarchy, Comm. Math. Phys. \Vec248 (2004), 501-526. · Zbl 1233.37042 · doi:10.1007/s00220-004-1098-3
[19] Y. You, Polynomial Solutions of the BKP Hierarchy and Projective representations of Symmetric groups in, Infinite-dimensional Lie algebras and groups , Adv. Ser. Math. Phys. \Vec7 (1990), 449-464. · Zbl 0744.35052
[20] Y. You, DKP and MDKP hierarchy of soliton equations, Physica D \Vec50 (1991), 429-462. · Zbl 0743.35064 · doi:10.1016/0167-2789(91)90009-X
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.