×

Sub-Lagrangians and sub-Hamiltonians on affine bundles. (English. Russian original) Zbl 1192.49049

J. Math. Sci., New York 161, No. 2, 261-282 (2009); translation from Sovrem. Mat. Prilozh. 61 (2008).
Summary: Sub-Lagrangians and sub-Hamiltonians are defined on anchored affine bundles as a natural extension of sub-Riemannian metrics. A duality considered between regular sub-Lagrangians and sub-Hamiltonians, gives the same solution of the Euler-Lagrange and Hamilton equations. Using the Pontryagin maximum principle, we prove that a similar situation of sub-Riemannian minimizers is encountered in this case, i.e., for a positive-definite sub-Lagrangian (sub-Hamiltonian), the locally arc-minimizing curves are either regular ones (as solutions of the Euler-Lagrange and Hamilton equations) or abnormal minimizers.

MSC:

49Q20 Variational problems in a geometric measure-theoretic setting
49K20 Optimality conditions for problems involving partial differential equations
49N15 Duality theory (optimization)
58E25 Applications of variational problems to control theory
Full Text: DOI

References:

[1] J. Cortes, M. de Leon, D. M. de Diego, and S. Martinez, ”Geometric description of vakonomic and nonholonomic dynamics. Comparison of solutions,” SIAM J. Control Optim., 41, No. 5, 1389–1412 (2003). · Zbl 1210.70013 · doi:10.1137/S036301290036817X
[2] R. Abraham and J. Marsden, Foundations of Mechanics, Reading Mass: Benjamin Cummings (1978). · Zbl 0393.70001
[3] A. A. Agrachev, ”Introduction to optimal control theory,” In: Mathematical Control Theory. Agrachev, A. A. (Ed.), Summer school, Trieste, Italy, September 3–28, 2001. Nos. 1 and 2, ICTP The Abdus Salam International Centre for Theoretical Physics, Trieste, ICTP Lect. Notes, 8, 451–513 (2002).
[4] A. A. Agrachev, Geometry of Optimal Control Problems and Hamiltonian Systems, C.I.M.E. school, June 2004, Cetraro, Italy, arXiv:math.OC/0506197. · Zbl 1170.49035
[5] A. A. Agrachev and R. V. Gamkrelidze, ”Feedback-invariant optimal control theory and differential geometry. I: Regular extremals,” J. Dynam. Control Syst., 3, No. 3, 343–389 (1997). · Zbl 0952.49019 · doi:10.1007/BF02463256
[6] A. A. Agrachev and Yu. L. Sachkov, ”Control theory from the geometric viewpoint,” In: Encyclopaedia Math. Sci. 87, Control Theory and Optimization, Springer-Verlag, Berlin (2004). · Zbl 1062.93001
[7] V. I. Arnold and A. B. Givental, ”Symplectic geometry,” In: Dynamical Systems IV, Encyclopaedia Math. Sci., Vol. 4, Springer-Verlag (1990).
[8] A. Cannas da Silva and A. Weinstein, ”Geometric models for noncommutative algebras,” In: Berkeley Mathematics Lecture Notes, 10, Providence, RI (AMS), Berkeley Center for Pure and Applied Mathematics, Berkeley, xiv (1999). · Zbl 1135.58300
[9] K. Grabowska, J. Grabowski, and P. Urbański, ”Lie brackets on affine bundles,” Ann. Global Anal. Geom., 24, 101–130 (2003). · Zbl 1044.53056 · doi:10.1023/A:1024457728027
[10] B. Langerock, ”A connection theoretic approach to sub-Riemannian geometry,” J. Geom. Phys., 46, Nos. 3–4, 203–230 (2003). · Zbl 1034.53029 · doi:10.1016/S0393-0440(02)00026-8
[11] M. de Leon and P. R. Rodrigues, Generalized Classical Mechanics and Field Theory, North-Holland (1985). · Zbl 0581.58015
[12] W. Liu and H. Sussmann, ”Shortest path for sub-riemannian metrics on rank-2 distributions,” Mem. Am. Math. Soc., 118 (1995).
[13] M. de Leon, D. Martin de Diego, and A. Santamaria Merino, ”Geometric numerical integration of nonholonomic systems and optimal control problems,” arXiv:math–ph/0212007.
[14] C. Lopez and E. Martinez, ”Sub-Finslerian metric associated to an optimal control system,” Siam J. Control Optim., 39, No. 3, 798–811 (2000). · Zbl 0972.49001 · doi:10.1137/S0363012999357562
[15] C.-M. Marle, ”Various approaches to conservative and non-conservative nonholonomic systems,” Rep. Math. Phys., 42, 211–229 (1998). · Zbl 0931.37023 · doi:10.1016/S0034-4877(98)80011-6
[16] E. Martinez, T. Mestdag, and W. Sarlet, ”Lie algebroid structures and Lagrangian systems on affine bundles,” J. Geom. Phys., 44, 70–95 (2002). · Zbl 1010.37032 · doi:10.1016/S0393-0440(02)00114-6
[17] T. Mestdag and B. Langerock, ”A Lie algebroid framework for non-holonomic systems,” J. Phys. A, 38, No. 5, 1097–1111 (2005). · Zbl 1061.70008 · doi:10.1088/0305-4470/38/5/011
[18] R. Miron, The Geometry of Higher Order Lagrange Spaces. Applications to Mechanics and Physics, Kluwer, Dordrecht, FTPH No. 82 (1997). · Zbl 0877.53001
[19] R. Montgomery, ”A tour of subriemannian geometries, their geodesics and applications,” Math. Surveys Monogr., 91, AMS (2002). · Zbl 1044.53022
[20] P. Popescu, ”Almost Lie structures, derivations and R-curvature on relative tangent spaces,” Rev. Roum. Math. Pures Appl., 37, No. 9, 779–789 (1992). · Zbl 0774.53017
[21] P. Popescu, ”Categories of modules with differentials,” J. Algebra, 185, 50–73 (1996). · Zbl 0871.18005 · doi:10.1006/jabr.1996.0312
[22] P. Popescu, On Generalized Algebroids, New Developments in Differential Geometry, Budapest 1996, Kluwer Academic Publ. (1998), pp. 329–342.
[23] Marcela Popescu and P. Popescu, ”Geometric objects defined by almost Lie structures,” In: Lie Algebroids and Related Topics in Differential Geometry, J. Kubarski, P. Urbanski, and R. Wolak (Eds.), Banach Center Publ., vol. 54 (2001), pp. 217–233. · Zbl 1001.53011
[24] D. Saunders, The Geometry of Jet Bundles, Cambridge University Press, New York–London (1989). · Zbl 0665.58002
[25] Z. Shen, Differential Geometry of Spray and Finsler Spaces, Kluwer Academic Publishers (2001). · Zbl 1009.53004
[26] R. S. Strichartz, ”Sub-Riemannian geometry,” J. Differ. Geom., 24, 221–263 (1989); 30, 595–596 (1989). · Zbl 0609.53021
[27] A. M. Vershik and V. Yu. Gershkovich, ”Nonholonomic dynamical systems. Geometry of distributions and variational problems,” In: Dynamical Systems VII, V. I. Arnold and S. P. Novikov (Eds.), Springer-Verlag (1994), pp. 1–81.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.