×

Transfer matrix method for linear multibody system. (English) Zbl 1181.70010

The authors present a new method for obtaining the dynamic characteristics of linear multibody systems. The method is a generalization of the traditional transfer matrix method. It is claimed that the method is computationally efficient and applicable to linear flexible and linear hybrid multibody systems. The authors present a detailed algorithm together with a flowchart for their method. They also provide a helpful illustrative example. The paper should be of interest and use to design engineers concerned with the characteristics of large flexible dynamical systems.

MSC:

70E55 Dynamics of multibody systems
70J10 Modal analysis in linear vibration theory
70-08 Computational methods for problems pertaining to mechanics of particles and systems
Full Text: DOI

References:

[1] Schiehlen, W.: Multibody system dynamics: roots and perspectives. Multibody Syst. Dyn. 1, 149–188 (1997) · Zbl 0901.70009 · doi:10.1023/A:1009745432698
[2] Shabana, A.A.: Flexible multibody dynamics: review of past and recent developments. Multibody Syst. Dyn. 1, 189–222 (1997) · Zbl 0893.70008 · doi:10.1023/A:1009773505418
[3] Holzer, H.: Die Berechnung der Drehsenwingungen. Springer, Berlin (1921) · JFM 48.0884.12
[4] Myklestad, N.O.: New method of calculating natural modals of coupled bending-torsion vibration of beams. Trans. ASME 67, 61–67 (1945)
[5] Thomson, W.T.: Matrix solution of vibration of nonuniform beams. J. Appl. Mech. 17, 337–339 (1950) · Zbl 0040.40104
[6] Pestel, E.C., Leckie, F.A.: Matrix Method in Elastomechanics. McGraw-Hill, New York (1963)
[7] Rubin, S.: Transmission matrices for vibrators and their relation to admittance and impedance. J. Eng. Mater. Technol. 86, 9–21 (1964)
[8] Rubin, S.: Review of mechanical immittance and transmission matrix concepts. J. Acoust. Soc. Am. 41, 1171–1179 (1967) · doi:10.1121/1.1910455
[9] Targoff, W.P.: The associated matrices of bending and coupled bending-torsion vibrations. J. Aeronaut. Sci. 14, 579–582 (1947)
[10] Lin, Y.K.: Probabilistic Theory of Structure Dynamics. McGraw-Hill, New York (1967)
[11] Mercer, C.A., Seavey, C.: Prediction of natural frequencies and norma1 modals of skin-stringer panel rows. J. Sound Vib. 6, 149–162 (1967) · doi:10.1016/0022-460X(67)90167-8
[12] Lin, Y.K., McDaniel, T.J.: Dynamics of beam-type periodic structures. J. Eng. Mater. Technol. 91, 1133–1141 (1969)
[13] Mead, D.J., Gupta, G.S.: In: Propagation of flexural waves in infinite, damped rib-skin structures. United States Air Force Report, AFML-TR-70-13 (1970)
[14] Mead, D.J.: Vibration response and wave propagation in periodic structures. J. Eng. Mater. Technol. 93, 783–792 (1971)
[15] Henderson, J.P., McDaniel, T.J.: The analysis of curved multi-span structures. J. Sound Vib. 18, 203–219 (1971) · doi:10.1016/0022-460X(71)90345-2
[16] McDaniel, T.J.: Dynamics of circular periodic structures. J. Aircr. 8, 143–149 (1971) · doi:10.2514/3.44245
[17] McDaniel, T.J., Logan, J.D.: Dynamics of cylindrical she1ls with variable curvature. J. Sound Vib. 19, 39–48 (1971) · Zbl 0221.73028 · doi:10.1016/0022-460X(71)90421-4
[18] Murthy, V.R., Nigam, N.C.: Dynamics characteristics of stiffened rings by transfer matrix approach. J. Sound Vib. 39, 237–245 (1975) · Zbl 0298.73097 · doi:10.1016/S0022-460X(75)80222-7
[19] Murthy, V.R., McDaniel, T.J.: Solution bounds to structural systems. AIAA J. 14, 111–113 (1976) · Zbl 0352.73041 · doi:10.2514/3.7063
[20] McDaniel, T.J., Murthy, V.R.: Solution bounds for varying geometry beams. J. Sound Vib. 44, 431–448 (1976) · Zbl 0328.73041 · doi:10.1016/0022-460X(76)90513-7
[21] Dokanish, M.A.: A new approach for plate vibration: combination of transfer matrix and finite element technique. J. Mech. Des. 94, 526–530 (1972)
[22] Ohga, M., Shigematus, T.: Transient analysis of plates by a combined finite element transfer matrix method. Comput. Struct. 26, 543–549 (1987) · Zbl 0612.73079 · doi:10.1016/0045-7949(87)90002-2
[23] Xue, H.: A combined dynamic finite element riccati transfer matrix method for solving non-linear eigenproblems of vibrations. Comput. Struct. 53, 1257–1261 (1994) · Zbl 0894.73181 · doi:10.1016/0045-7949(94)90393-X
[24] Loewy, R.G., Degen, E.E., Shephard, M.S.: Combined finite element-transfer matrix method based on a mixed formulation. Comput. Struct. 20, 173–180 (1985) · Zbl 0574.73087 · doi:10.1016/0045-7949(85)90066-5
[25] Loewy, R.G., Bhntani, N.: Combined finite element-transfer matrix method. J. Sound Vib. 226(5), 1048–1052 (1999) · doi:10.1006/jsvi.1999.2332
[26] Horner, G.C., Pilkey, W.D.: The riccati transfer matrix method. J. Mech. Des. 1, 297–302 (1978) · doi:10.1115/1.3453915
[27] Rui, X.T., Lu, Y.Q.: Transfer matrix method of vibration of multibody system. Chin. J. Astronaut. 16(3), 41–47 (1995)
[28] Rui, X.T., Sui, W.H., Shao, Y.Z.: Transfer matrix of rigid body and its application in multibody dynamics. Chin. J. Astronaut. 14(4), 82–87 (1993)
[29] Lu, Y.Q., Rui, X.T.: Eigenvalue problem, orthogonal property and response of multibody system. In: Zhang, J.H., Zhang, X.N. (eds.) ICAPV 2000, Proceedings of International Conference on Advanced Problems in Vibration Theory and Applications. Science Press, Beijing (2000)
[30] Kumar, A.S., Sankar, T.S.: A new transfer matrix method for response analysis of large dynamic systems. Comput. Struct. 23, 545–552 (1986) · Zbl 0583.73079 · doi:10.1016/0045-7949(86)90097-0
[31] Rui, X.T., Lu, Y.Q., Ling, P. et al.: Discrete time transfer matrix method for mutibody system dynamics. In: Euromech Colloquium 404 on Advances in Computational Multibody Dynamics, Lisbon, Portugal, 1999, pp. 93–108 (1999)
[32] Rui, X.T., He, B., Lu, Y.Q., et al.: Discrete time transfer matrix method for multibody system dynamics. Multibody Syst. Dyn. 14(3–4), 317–344 (2005) · Zbl 1146.70323 · doi:10.1007/s11044-005-5006-1
[33] Kane, T.R., Likine, P.W., Levinson, D.A.: Spacecraft Dynamics. McGraw-Hill, New York (1983)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.