×

The \(M/G/1\) queue with quasi-restricted accessibility. (English) Zbl 1178.60062

The quasi-restricted accessibility (QRA) is a new variation of queueing models with workload dependent admission policies. Under QRA the M/G/1 queue system model was considered. In this model, the service time \(S_{n}\) assigned to the \(n\)-th customer depends on his service requirement \(X_{n}\) and his waiting time \(W_{n}\). If \(W_{n} + X_{n}\) does not exceed a certain threshold \(b\), then the customer receives service time \(b - W_{n} + (W_{n} + X_{n} - b)F_{n}\) where \(F_{n}\) is a fraction of the service requirement beyond \(b\).
The authors of this paper have determined the stead-state distribution of the waiting time in the QRA M/G/1 queue. The case of exponential barriers \(b\) instead of one constant threshold was studied. In this case, barrier \(B_{n}\) for the \(n\)-th customer is exponentially distributed with a mean, say \(1/\xi\). Thus, the stead-state waiting time (and workload) in the model with the use the closed expression for the LST formula was obtained. For the case of an QRA M/M/1 and M/G/1 queues the LST formula of the busy period in terms of transformations for these phases was derived. Very important are the derivations of the stopping time for both of these queues. As the example of this system the non-Markovian Erlang \((2, \mu)/M/1\)-type QRA system with service requirement \(X_{n}\exp(\lambda)\), under QRA was considered. For this system the LST formula of the length of the busy period was obtained. Other expressions, for instance the stopping time and the LST of the residual time until the time in a given functional is given, were also computed.
In summation, the following results for QRA M/G/1 system were obtained: the steady-state distribution of the waiting time and also the steady-state distribution of the workload process, the explicit formula for the LST of the steady-state waiting time, the distribution of the length of a busy period in a closed form, the cycle maximum distribution under QRA, the distribution function of the length of a busy period for the non-Markovian case of the phase-type arrivals.

MSC:

60K25 Queueing theory (aspects of probability theory)
68M20 Performance evaluation, queueing, and scheduling in the context of computer systems
90B22 Queues and service in operations research
Full Text: DOI

References:

[1] DOI: 10.1007/s00186-005-0032-6 · Zbl 1085.60064 · doi:10.1007/s00186-005-0032-6
[2] DOI: 10.1023/A:1009970005784 · Zbl 0926.60072 · doi:10.1023/A:1009970005784
[3] DOI: 10.1142/9789812779311 · doi:10.1142/9789812779311
[4] Asmussen S., Applied Probability and Queues,, 2. ed. (2001) · Zbl 1029.60001
[5] Borovkov K., Electronic Communications in Probability 6 pp 91– (2001)
[6] DOI: 10.2307/1427345 · Zbl 0549.60091 · doi:10.2307/1427345
[7] DOI: 10.1007/s11134-005-0730-z · Zbl 1085.60066 · doi:10.1007/s11134-005-0730-z
[8] DOI: 10.1023/B:QUES.0000027998.95375.ee · Zbl 1056.90026 · doi:10.1023/B:QUES.0000027998.95375.ee
[9] DOI: 10.1007/BF01535299 · Zbl 0186.24503 · doi:10.1007/BF01535299
[10] Cohen J.W., On Regenerative Processes in Queueing Theory (1976) · Zbl 0323.60083
[11] Cohen J.W., The Single Server Queue,, 2. ed. (1982) · Zbl 0481.60003
[12] DOI: 10.1017/S1446788700025325 · Zbl 0131.16802 · doi:10.1017/S1446788700025325
[13] DOI: 10.1109/26.328980 · doi:10.1109/26.328980
[14] DOI: 10.1287/mnsc.23.12.1349 · Zbl 0372.60134 · doi:10.1287/mnsc.23.12.1349
[15] Gnedenko B.V., Introduction to Queueing Theory,, 2. ed. (1989)
[16] DOI: 10.1111/j.1467-9574.1987.tb01209.x · Zbl 0634.60086 · doi:10.1111/j.1467-9574.1987.tb01209.x
[17] DOI: 10.1287/mnsc.25.2.205 · Zbl 0414.60087 · doi:10.1287/mnsc.25.2.205
[18] DOI: 10.2307/3214576 · Zbl 0761.60065 · doi:10.2307/3214576
[19] DOI: 10.1007/BF01158903 · Zbl 0661.60115 · doi:10.1007/BF01158903
[20] DOI: 10.1023/A:1020949626017 · Zbl 1013.90090 · doi:10.1023/A:1020949626017
[21] DOI: 10.1007/s11134-006-6084-3 · Zbl 1098.90023 · doi:10.1007/s11134-006-6084-3
[22] DOI: 10.2307/3212332 · Zbl 0243.60060 · doi:10.2307/3212332
[23] Mandjes M., Proceedings of Infocom pp 3– (2002)
[24] DOI: 10.1007/BF01148942 · Zbl 0835.60080 · doi:10.1007/BF01148942
[25] DOI: 10.1016/S0167-6377(00)00043-2 · doi:10.1016/S0167-6377(00)00043-2
[26] DOI: 10.1023/A:1017931515538 · Zbl 1002.90014 · doi:10.1023/A:1017931515538
[27] DOI: 10.1081/STM-120016444 · Zbl 1013.60070 · doi:10.1081/STM-120016444
[28] DOI: 10.1016/S0167-6377(03)00032-4 · Zbl 1052.90021 · doi:10.1016/S0167-6377(03)00032-4
[29] DOI: 10.1017/S0269964803174025 · Zbl 1053.60049 · doi:10.1017/S0269964803174025
[30] DOI: 10.1287/moor.4.2.162 · Zbl 0405.60085 · doi:10.1287/moor.4.2.162
[31] DOI: 10.1287/opre.34.6.895 · Zbl 0654.60090 · doi:10.1287/opre.34.6.895
[32] DOI: 10.2307/1426475 · Zbl 0449.60064 · doi:10.2307/1426475
[33] DOI: 10.1287/mnsc.1040.0302 · Zbl 1232.90159 · doi:10.1287/mnsc.1040.0302
[34] DOI: 10.1080/15326349908807527 · Zbl 0932.60049 · doi:10.1080/15326349908807527
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.