×

Universal forms over \(\mathbb Q(\sqrt{5})\). (English) Zbl 1178.11035

In this work, the author considers the universal forms over \(\mathbb{Q}(\sqrt{5})\) (a form is called universal if it represents all positive integers). He derives all quaternary positive definite integral quadratic forms over \(\mathbb{Q}(\sqrt{5})\) and also gives a proof of Conway and Schneeberger’s 15-Theorem. He lists in Theorem 3.3 that there are 35 quaternary integral quadratic forms over \(\mathbb{Q}(\sqrt{5})\) which are universal. Also he shows in Corollary 3.4 that there are 58 nonisometric quaternary integral universal quadratic forms over \(\mathbb{Q}(\sqrt{5})\). Finally, he proves that any \(O-\)lattice which represents \[ [1,2,1+\varepsilon ^{2},2+\varepsilon ^{\pm 2},2(1+\varepsilon ^{2}),3(1+\varepsilon ^{2})] \] is universal.

MSC:

11E10 Forms over real fields
11E41 Class numbers of quadratic and Hermitian forms
11E25 Sums of squares and representations by other particular quadratic forms
Full Text: DOI

References:

[1] Bhargava, M.: On the Conway-Schneeberger Fifteen Theorem. Contemp. Math. 272, 27–37 (1999) · Zbl 0987.11027
[2] Chan, W.K., Kim, M.-H., Raghavan, S.: Ternary universal integral quadratic forms. Jpn. J. Math. 22, 263–273 (1996) · Zbl 0868.11020
[3] Dickson, L.E.: Quaternary quadratic forms representing all integers. Am. J. Math. 49, 39–56 (1927) · JFM 53.0133.05 · doi:10.2307/2370770
[4] Hsia, J.S., Kitaoka, Y., Kneser, M.: Representation of positive definite quadratic forms. J. Reine Angew. Math. 301, 132–141 (1978) · Zbl 0374.10013 · doi:10.1515/crll.1978.301.132
[5] Kim, B.M.: On nonvanishing sum of integral squares of \(\mathbb{Q}(\sqrt{5})\) . Kanweon-Kyungki Math. J. 6(2), 299–302 (1998)
[6] Kim, M.H.: Recent developments on universal forms. Contemp. Math. 344, 215–228 (2004) · Zbl 1143.11309
[7] Kim, B.M., Kim, M.-H., Oh, B.K.: 2-Universal positive definite integral quinary quadratic forms. Contemp. Math. 249, 51–62 (1999) · Zbl 0955.11011
[8] Kim, B.M., Kim, M.-H., Oh, B.K.: A finiteness theorem for representability of quadratic forms by forms. J. Reine Angew. Math. 581, 23–30 (2005) · Zbl 1143.11011 · doi:10.1515/crll.2005.2005.581.23
[9] Körner, O.: Die Maße der Geschlechter quadratischer Formen vom Range in quadratischen Zahlkörpern. Math. Ann. 193, 279–314 (1971) · doi:10.1007/BF02052568
[10] Körner, O.: Bestimmung einklassiger Geschlechter ternärer quadratischer Formen in reell-quadratischen Zahlkörpern. Math. Ann. 210, 91–95 (1973) · Zbl 0248.12005 · doi:10.1007/BF01432940
[11] Lee, Y.M.: Universal Forms over the Number Field \(\mathbb{Q}(\sqrt{5})\) . Ph.D. Thesis, Seoul National University (2004)
[12] Maass, H.: Über die darstellung total positiver des körpers \(R(\sqrt{5})\) als Summe von drei Quadraten. Abh. Math. Semin. Univ. Hamb. 14, 185–191 (1941) · Zbl 0025.01602 · doi:10.1007/BF02940744
[13] O’Meara, O.T.: The integral representations of quadratic forms over local fields. Am. J. Math. 80, 843–878 (1958) · Zbl 0085.02801 · doi:10.2307/2372837
[14] O’Meara, O.T.: Introduction to Quadratic Forms. Springer, New York (1973)
[15] Ramanujan, S.: On the expression of a number in the form ax 2+by 2+cz 2+dw 2. Proc. Cambridge Phil. Soc. 39, 11–21 (1917) · JFM 46.0240.01
[16] Siegel, C.L.: Über die Analytische Theorie der Quadratischen Formen, I. Ann. Math. 36, 527–606 (1935) · JFM 61.0140.01 · doi:10.2307/1968644
[17] Siegel, C.L.: Über die Analytische Theorie der Quadratischen Formen, II. Ann. Math. 37, 230–263 (1936) · JFM 62.0136.03 · doi:10.2307/1968694
[18] Siegel, C.L.: Über die Analytische Theorie der Quadratischen Formen, III. Ann. Math. 38, 212–291 (1937) · Zbl 0016.01205 · doi:10.2307/1968520
[19] Siegel, C.L.: Sums of mth power of algebraic integers. Ann. Math. 46, 313–339 (1945) · Zbl 0063.07010 · doi:10.2307/1969026
[20] Willerding, M.F.: Determination of all classes of positive quaternary quadratic forms which represent all positive integers. Bull. Am. Math. Soc. 54, 334–337 (1948) · Zbl 0032.26603 · doi:10.1090/S0002-9904-1948-08998-4
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.