×

Convex polytopes and factorization properties in generalized power series domains. (English) Zbl 1175.13009

An element \(a\) of an integral domain \(R\) is primal if, whenever \(a\) divides \(bc\) with \(b\) and \(c\) in \(R\), then \(a=b'c'\) for some \(b',c'\in R\) where \(b'\) divides \(b\) and \(c'\) divides \(c\). An integral domain in which each element is primal is said to be pre-Schreier. Let \((M,\leq)\) be a strictly ordered monoid; that is, \(M\) is a commutative monoid and \(\leq\) is a partial order on \(M\) such that \(x<y\) implies \(x+z<y+z\) for all \(x,y,z\in M\). A subset \(N\) of \(M\) is said to be narrow if each subset of \(N\) consisting of pairwise order-incomparable elements in the \(\leq\) order is finite. Let \(R\) be a commutative ring. For a function \(f:M\longrightarrow R\) the support of \(f\) is defined as \(\mathrm{supp}(f)=\{x\in M; f(x)\not=0\}\). Then the generalized power series ring \(R[[M,\leq ]]\) is the set of all such functions whose support is Artinian and narrow in the \(\leq\) partial ordering. Addition is defined by \((f+g)(x)=f(x)+g(x)\) and multiplication by \((fg)(x)=\sum_{x_1+x_2=x}f(x_1)g(x_2)\). Let \(K\) be any commutative field. In this paper the authors associate to any polytope \(C\subseteq R^n\), that is not simplex, a monoid \(M={M}_s(C)\) such that the domain \(R=K[[M,\leq]]\), of generalized power series, has no irreducible elements and that is not pre-Schreier.

MSC:

13F15 Commutative rings defined by factorization properties (e.g., atomic, factorial, half-factorial)
13F25 Formal power series rings
Full Text: DOI

References:

[1] D.D. Anderson and M. Zafrullah, The Schreier property and Gauss’ lemma , Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8) 10 (2007), · Zbl 1129.13025
[2] A. Berarducci, Factorization in generalized power series , Trans. Amer. Math. Soc. 352 (1999), 553-577. JSTOR: · Zbl 0957.13020 · doi:10.1090/S0002-9947-99-02172-8
[3] G. Brookfield, Cancellation in primely generated refinement monoids , Algebra Universalis 46 (2001), 343-371. · Zbl 1058.20048 · doi:10.1007/PL00000350
[4] G. Brookfield and D.E. Rush, An antimatter domain which is not pre-Schreier-Preliminary version , www.calstatela.edu/faculty/gbrookf, October 2002.
[5] ——–, When graded domains are Schreier or pre-Schreier , J. Pure Appl. Algebra 195 (2005), 225-230. · Zbl 1099.13037 · doi:10.1016/j.jpaa.2004.08.003
[6] P.M. Cohn, Bezout rings and their subrings , Proc. Camb. Philos. Soc. 64 (1968), 251-264. · Zbl 0157.08401 · doi:10.1017/S0305004100042791
[7] ——–, Unique factorization domains , Amer. Math. Monthly 80 (1973), 1-18. JSTOR: · Zbl 0256.13011 · doi:10.2307/2319253
[8] J. Coykendall, D.E. Dobbs and B. Mullins, On integral domains with no atoms , Communications in Algebra 27 (1999), 5813-5831. · Zbl 0990.13015 · doi:10.1080/00927879908826792
[9] W. Dicks and E. Sontag, Sylvester domains , J. Pure Appl. Algebra 13 (1978), 243-275. · Zbl 0393.16002 · doi:10.1016/0022-4049(78)90011-7
[10] L. Fuchs, Riesz groups , Ann. Scoula Norm. Sup. Pisa 19 (1965), 1-34. · Zbl 0125.28703
[11] K.R. Goodearl, Partially ordered abelian groups with interpolation , Math. Surveys Mono. 20 , American Mathematical Society, Providence, RI, 1986. · Zbl 0589.06008
[12] Hwankoo Kim and Young Soo Park,, Krull domains of generalized power series , J. Algebra 237 (2001), 292-301. · Zbl 1039.13012 · doi:10.1006/jabr.2000.8581
[13] S. McAdam and D.E. Rush, Schreier rings , Bull. London Math. Soc. 10 (1978), 77-80. · Zbl 0378.13003 · doi:10.1112/blms/10.1.77
[14] D. Pitteloud, Existence of prime elements in rings of generalized power series , J. Symbolic Logic 66 (2001), 1206-1216. JSTOR: · Zbl 1006.13005 · doi:10.2307/2695102
[15] P. Ribenboim, Noetherian rings of generalized power series , J. Pure Appl. Algebra 79 (1992), 293-312. · Zbl 0761.13007 · doi:10.1016/0022-4049(92)90056-L
[16] ——–, Rings of generalized power series II: Units and zero-divisors , J. Algebra 168 (1994), 71-89. · Zbl 0806.13011 · doi:10.1006/jabr.1994.1221
[17] ——–, Special properties of generalized power series , J. Algebra 173 (1995), 566-586. · Zbl 0852.13008 · doi:10.1006/jabr.1995.1103
[18] D.E. Rush, Quadratic polynomials, factorization in integral domains, and Schreier domains from pullbacks , Mathematika 50 (2003), 103-112. · Zbl 1076.13002 · doi:10.1112/S0025579300014832
[19] B. Sturmfels, Polynomial equations and convex polytopes , Amer. Math. Monthly 105 (1998), 907-922. JSTOR: · Zbl 0988.52021 · doi:10.2307/2589283
[20] ——–, Gröbner bases and convex polytopes , University Lecture Series 8 , American Mathematical Society, Providence, RI, 1996 · Zbl 0856.13020
[21] W.C. Waterhouse, Quadratic polynomials and unique factorization , Amer. Math. Monthly 109 (2002), 70-72. JSTOR: · Zbl 1036.13004 · doi:10.2307/2695769
[22] M. Zafrullah, On a property of pre-Schreier rings , Commun. Algebra 15 (1987), 1895-1920. · Zbl 0634.13004 · doi:10.1080/00927878708823512
[23] L. Zhongkui, The ascending chain condition for principal ideals of rings of generalized power series , Commun. Algebra 32 (2004), 3305-3314. · Zbl 1061.16048 · doi:10.1081/AGB-120039398
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.