×

Neutrino mass spectrum from neutrino spin-flip-driven gravitational waves. (English) Zbl 1173.83306

Summary: Neutrino \((\nu)\) oscillations during the core collapse and bounce of a supernova (SN) are shown to generate the most powerful detectable gravitational wave (GW) bursts. The SN neutronization phase produces mainly electron \((\nu_e)\) neutrinos, the oscillations of which must take place within a few mean-free paths of their resonance surface located near their neutrinosphere. Here we characterize the GW signals produced by spin-flip oscillations inside the fast-rotating protoneutron star in the SN core. In this novel mechanism, the release of both the oscillation-produced \(\nu_\mu\)’s, \(\nu_\tau\)’s and the spin-flip-driven GW pulse provides a unique emission offset \(\Delta T_{\text{GW}\leftrightarrow\nu}^{\text{emission}}=0\) for measuring the \(\nu\) travel time to Earth. As massive \(\nu\)’s get noticeably delayed on its journey to Earth with respect to the GW, they generate over the oscillation transient, the accurate measurement of this time-of-flight delay by SNEWS + LIGO, VIRGO, BBO, DECIGO, etc. can assess the absolute \(\nu\) mass spectrum straightforwardly.

MSC:

83C35 Gravitational waves
85A05 Galactic and stellar dynamics
85A15 Galactic and stellar structure
Full Text: DOI

References:

[1] DOI: 10.1103/PhysRevD.48.2167 · doi:10.1103/PhysRevD.48.2167
[2] DOI: 10.1103/PhysRevLett.95.171101 · doi:10.1103/PhysRevLett.95.171101
[3] DOI: 10.1088/1367-2630/6/1/114 · doi:10.1088/1367-2630/6/1/114
[4] DOI: 10.1103/PhysRevD.65.033010 · doi:10.1103/PhysRevD.65.033010
[5] DOI: 10.1103/PhysRevD.51.6647 · doi:10.1103/PhysRevD.51.6647
[6] DOI: 10.1103/PhysRevD.66.123005 · doi:10.1103/PhysRevD.66.123005
[7] DOI: 10.1103/PhysRevD.60.033007 · doi:10.1103/PhysRevD.60.033007
[8] DOI: 10.1103/PhysRevD.63.073011 · doi:10.1103/PhysRevD.63.073011
[9] DOI: 10.1016/S0370-1573(03)00102-9 · doi:10.1016/S0370-1573(03)00102-9
[10] DOI: 10.1103/PhysRevD.58.083002 · doi:10.1103/PhysRevD.58.083002
[11] DOI: 10.1086/176188 · doi:10.1086/176188
[12] DOI: 10.1103/PhysRevLett.76.352 · doi:10.1103/PhysRevLett.76.352
[13] DOI: 10.1103/PhysRevD.62.033007 · doi:10.1103/PhysRevD.62.033007
[14] DOI: 10.1103/PhysRevD.56.5898 · doi:10.1103/PhysRevD.56.5898
[15] DOI: 10.1103/PhysRevLett.81.1562 · doi:10.1103/PhysRevLett.81.1562
[16] DOI: 10.1103/PhysRevLett.77.4872 · doi:10.1103/PhysRevLett.77.4872
[17] DOI: 10.1111/j.1365-2966.2005.09317.x · doi:10.1111/j.1365-2966.2005.09317.x
[18] DOI: 10.1590/S0103-97332005000300016 · doi:10.1590/S0103-97332005000300016
[19] DOI: 10.1103/PhysRevD.69.024008 · doi:10.1103/PhysRevD.69.024008
[20] DOI: 10.1086/165367 · doi:10.1086/165367
[21] DOI: 10.1103/PhysRevLett.86.1935 · doi:10.1103/PhysRevLett.86.1935
[22] DOI: 10.1086/317299 · doi:10.1086/317299
[23] DOI: 10.1103/PhysRevD.65.061503 · doi:10.1103/PhysRevD.65.061503
[24] DOI: 10.1140/epjc/s2004-01821-6 · doi:10.1140/epjc/s2004-01821-6
[25] Müller E., Astron. Astrophys. 317 pp 140–
[26] DOI: 10.1016/0370-2693(92)91887-F · doi:10.1016/0370-2693(92)91887-F
[27] Peltoniemi J. T., Astron. Astrophys. 354 pp 121–
[28] DOI: 10.1103/PhysRevD.54.1587 · doi:10.1103/PhysRevD.54.1587
[29] DOI: 10.1038/323310a0 · doi:10.1038/323310a0
[30] DOI: 10.1086/342781 · doi:10.1086/342781
[31] DOI: 10.1016/0370-2693(88)90963-X · doi:10.1016/0370-2693(88)90963-X
[32] DOI: 10.1016/0370-2693(87)90027-X · doi:10.1016/0370-2693(87)90027-X
[33] Zwerger T., Astron. Astrophys. 320 pp 209–
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.