×

Another form of equations of motion for constrained multibody systems. (English) Zbl 1170.70312

Summary: This paper presents a new and simplified set of explicit equations of motion for constrained mechanical systems. The equations are applicable with both holonomic and nonholonomic systems and the constraints may, or may not, be ideal. It is shown that this set of equations is equivalent to governing equations developed earlier by others. The connection of these equations with Kane’s equations is discussed. It is shown that the developed equations are directly applicable with controlled systems where the controlling forces and moments may be subject to constraints. Finally, a procedure is presented for determining which control force systems are equivalent. Examples are presented to demonstrate the advantages, features, and range of application of the equations.

MSC:

70E55 Dynamics of multibody systems
Full Text: DOI

References:

[1] Gibbs, J.W.: On the fundamental formulas of dynamics. Am. J. Math. 2, 49–64 (1879) · JFM 11.0643.01 · doi:10.2307/2369196
[2] Whittaker, E.T.: A Treatise on the Analytical Dynamics of Particles and Rigid Bodies. Cambridge Mathematical Library, London (1937) · JFM 63.1286.03
[3] Hamel, P.G.: Theoretiche Mechanik. Springer-Verlag, Berlin (1949) · Zbl 0036.24301
[4] Kane, T.R.: Dynamics of nonholonomic systems. J. Appl. Mech. 28, 574–578 (1961) · Zbl 0100.19505
[5] Neimark, J.I., Fufaev, N.A.: Dynamics of Nonholonomic Systems. American Mathematical Society, Providence, RI (1967) · Zbl 0245.70011
[6] Passerello, C.E., Huston, R.L.: Another look at nonholonomic systems. J. Appl. Mech. 40, 101–104 (1973) · Zbl 0261.70017 · doi:10.1115/1.3422905
[7] Pars, L.A.: A Treatise on Analytical Dynamics. Oxbow, Woodridge, CT (1979) · Zbl 0125.12004
[8] Goldstein, H.: Classical Mechanics, 2nd edn. Addison-Wesley, Reading, MA (1980) · Zbl 0491.70001
[9] Kane, T.R., Levinson, D.A.: Formulation of equations of motion for complex spacecraft. J. Guid. Control 3, 99–112 (1980) · Zbl 0435.70027 · doi:10.2514/3.55956
[10] Hemami, H., Weimer, F.C.: Modeling of nonholonomic dynamic systems with applications. J. Appl. Mech. 48, 177–182 (1981) · Zbl 0458.70011 · doi:10.1115/1.3157563
[11] Haug, E.J., Wehage, R.A., Berman, N.C.: Dynamics analysis and design of constrained mechanical systems. J. Mech. Des. 103, 560–570 (1981) · doi:10.1115/1.3254955
[12] Kamman, J.W., Huston, R.L.: Dynamics of constrained multibody systems. J. Appl. Mech. 51, 899–904 (1984) · Zbl 0564.70004 · doi:10.1115/1.3167743
[13] Kane, T.R., Levinson, D.A.: Dynamics: Theory and Applications. McGraw-Hill, New York (1985)
[14] Singh, R.P., Likins, P.W.: Singular value decomposition for constrained dynamical systems. J. Appl. Mech. 52, 899–904 (1984)
[15] Wang, J.T., Huston, R.L.: Kane’s equations with undetermined multipliers – application with constrained multibody systems. J. Appl. Mech. 54, 424–429 (1987) · Zbl 0624.70002 · doi:10.1115/1.3173031
[16] Xu, M., Liu, C.Q., Huston, R.L.: Analysis of non-linearly constrained non-holonomic multibody systems. Int. J. Non-Linear Mech. 25, 511–519 (1990) · Zbl 0719.70009 · doi:10.1016/0020-7462(90)90015-2
[17] Huston, R.L.: Multibody Dynamics. Butterworth-Heineman, Stoneham, MA (1990) · Zbl 0605.70007
[18] Wang, J.T.: Inverse dynamics of constrained multibody systems. J. Appl. Mech. 57, 750–757 (1990) · Zbl 0727.70004 · doi:10.1115/1.2897087
[19] Huston, R. L.: Multibody dynamics – modeling and analysis methods. Appl. Mech. Rev. 44, 109–117 (1991) · doi:10.1115/1.3119496
[20] Huston, R.L.: Constraint forces and undetermined multipliers in constrained multibody system dynamics. Multibody Syst. Dyn. 3, 381–389 (1999) · Zbl 0956.70007 · doi:10.1023/A:1009868500311
[21] Huston, R.L., Liu, C.Q.: Formulas for Dynamic Analysis. Marcel Dekker, New York (2001) · Zbl 1008.70500
[22] Udwadia, F.E., Kalaba, R.E.: Explicit equations of motion for mechanical systems with nonideal constraints. J. Appl. Mech. 68, 462–467 (2001) · Zbl 1110.74717 · doi:10.1115/1.1364492
[23] Udwadia, F.E., Kalaba, R.E.: What is the general form of the explicit equations of motion for constrained mechanical systems. J. Appl. Mech. 69, 335–339 (2002) · Zbl 1110.74718 · doi:10.1115/1.1459071
[24] Udwadia, F.E., Kalaba, R.E.: On the foundation of analytical dynamics. Int. J. Non-Linear Mech. 37, 1079–1090 (2002) · Zbl 1346.70011 · doi:10.1016/S0020-7462(01)00033-6
[25] Udwadia, F.E., Kalaba, R.E., Phohomsiri, P.: Mechanical systems with nonideal constraints: explicit equations without the use of generalized inverses. J. Appl. Mech. 71, 615–620 (2004) · Zbl 1111.74670 · doi:10.1115/1.1767844
[26] Walton, W.C., Jr., Steeves, E.C.: A new matrix theorem and its application for establishing independent coordinates for complex dynamical systems with constraints. NASA Technical Report TR-326 (1969)
[27] Liu, C.Q., Liu, X.: A new method for analysis of complex systems based on FRF’s of substructures. Shock Vib. 11, 1–7 (2004)
[28] Kirgetov, V.I.: The motion of controlled mechanical systems with prescribed constraints (servoconstraints). Prikladnaia Mathematika i Mekhanika 21, 433–466 (1967) · Zbl 0201.57003
[29] Rumiantsev, V.V.: On the motion of controlled mechanical systems. PMM J. Appl. Math. Mech. 40, 771–781 (1976) · doi:10.1016/0021-8928(76)90001-0
[30] Hemami, H., Syman, B.F.: Indirect control of the forces of constraint in dynamic systems. J. Dyn. Syst. Meas. Control 101, 355–369 (1979) · Zbl 0442.93002 · doi:10.1115/1.3426451
[31] Huston, R.L., Liu, C.Q., Li, F.: Equivalent control of constrained multibody systems. Multibody Syst. Dyn. 10, 313–321 (2003) · Zbl 1037.70008 · doi:10.1023/A:1025997512070
[32] Huston, R.L., Kamman, J.W., King, T.P.: UCIN-DYNOCOMBS – Software for the dynamic analysis of constrained multibody systems. In: Multibody Systems Handbook, Schielen, W. (ed.), pp. 103–111. Springer-Verlag, Berlin (1990)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.