×

Basic solution of two parallel mode-I permeable cracks in functionally graded piezoelectric materials. (English) Zbl 1168.74441

Summary: The basic solution of two parallel mode-I permeable cracks in functionally graded piezoelectric materials was studied in this paper using the generalized Almansi’s theorem. To make the analysis tractable, it was assumed that the shear modulus varies exponentially along the horizontal axis parallel to the crack. The problem was formulated through a Fourier transform into two pairs of dual integral equations, in which unknown variables are jumps of displacements across the crack surface. To solve the dual integral equations, the jumps of displacements across the crack surfaces were directly expanded as a series of Jacobi polynomials. The solution of the present paper shows that the singular stresses and the singular electric displacements at the crack tips in functionally graded piezoelectric materials carry the same forms as those in homogeneous piezoelectric materials; however, the magnitudes of intensity factors depend on the gradient of functionally graded piezoelectric material properties. It was also revealed that the crack shielding effect is also present in functionally graded piezoelectric materials.

MSC:

74R10 Brittle fracture
74F15 Electromagnetic effects in solid mechanics
74E05 Inhomogeneity in solid mechanics
Full Text: DOI

References:

[1] Zhu X., Wang Q. and Meng Z. (1995). A functionally gradient piezoelectric actuator prepared by metallurgical process in PMN-PZ-PT system. J. Mater. Sci. Lett. 14: 516–518 · doi:10.1007/BF00665920
[2] Zhu X., Zhu J., Zhou S., Li Q. and Liu Z. (1999). Microstructures of the monomorph piezoelectric ceramic actuators with functionally gradient. Sensor Actuators A 74: 198–202 · doi:10.1016/S0924-4247(98)00315-X
[3] Takagi K., Li J.F., Yokoyama S. and Watanabe R. (2003). Fabrication and evaluation of PZT/Pt piezoelectric composites and functionally graded actuators. J. Eur. Ceram. Soc. 10: 1577–1583 · doi:10.1016/S0955-2219(02)00407-7
[4] Jin D.R. (2003). Functionally graded PZT/ZnO piezoelectric composites. J. Mater. Sci. Lett. 22: 971–974 · doi:10.1023/A:1024612929936
[5] Chen J., Liu Z.X. and Zou Z.Z. (2003). Electriomechanical impact of a crack in a functionally graded piezoelectric medium. Theor. Appl. Fract. Mech. 39: 47–60 · doi:10.1016/S0167-8442(02)00137-4
[6] Ueda S. (2006). Transient response of a center crack in a functionally graded piezoelectric strip under electromechanical impact. Eng. Fract. Mech. 73: 1455–1471 · doi:10.1016/j.engfracmech.2006.01.025
[7] Wang B.L. (2003). A mode-III crack in functionally graded piezoelectric materials. Mech. Res. Commun. 30: 151–159 · Zbl 1026.74060 · doi:10.1016/S0093-6413(02)00366-X
[8] Soon (2003). Man Kwon Electrical nonlinear anti-plane shear crack in a functionally graded piezoelectric strip. Int. J. Solids Struc. 40: 5649–5667 · Zbl 1059.74519 · doi:10.1016/S0020-7683(03)00316-0
[9] Li C.Y. and Weng G.J. (2002). Antiplane crack problem in functionally graded piezoelectric materials. J. Appl. Mech. 69(4): 481–488 · Zbl 1110.74553 · doi:10.1115/1.1467091
[10] Jin B. and Zhong Z. (2002). A moving mode-III crack in functionally graded piezoelectric material: permeable problem. Mech. Res. Commun. 29: 217–224 · Zbl 1012.74542 · doi:10.1016/S0093-6413(02)00259-8
[11] Zhou Z.G. and Wang B. (2004). Two parallel symmetry permeable cracks in functionally graded piezoelectric/piezomagnetic materials under anti-plane shear loading. Int. J. Solids Struc. 41: 4407–4422 · Zbl 1079.74621 · doi:10.1016/j.ijsolstr.2004.03.004
[12] Zhou Z.G., Wu L.Z. and Wang B. (2005). The behavior of a crack in functionally graded piezoelectric/piezomagnetic materials under anti-plane shear loading. Arch. Appl. Mech. 74(8): 526–535 · Zbl 1100.74052 · doi:10.1007/s00419-004-0369-y
[13] Morse P.M. and Feshbach H. (1958). Methods of Theoretical Physics, Vol.1. McGraw-Hill, New York · Zbl 0051.40603
[14] Deeg, W.E.F.: The analysis of dislocation, crack and inclusion problems in piezoelectric solids, Ph.D. thesis, Stanford University (1980)
[15] Gao H., Zhang T.Y. and Tong P. (1997). Local and global energy rates for an elastically yielded crack in piezoelectric ceramics. J. Mech. Phys. Solids 45(4): 491–510 · doi:10.1016/S0022-5096(96)00108-1
[16] Parton V.S. (1976). Fracture mechanics of piezoelectric materials. ACTA Astronaut. 3: 671–683 · Zbl 0351.73115 · doi:10.1016/0094-5765(76)90105-3
[17] Zhang T.Y. and Hack J.E. (1992). mode-III cracks in piezoelectric materials. J. Appl. Phys. 71(12): 5865–5870 · doi:10.1063/1.350483
[18] Soh A.K., Fang D.N. and Lee K.L. (2000). Analysis of a bi-piezoelectric ceramic layer with an interfacial crack subjected to anti-plane shear and in-plane electric loading. Eur. J. Mech. A/Solid 19(6): 961–977 · Zbl 1001.74044 · doi:10.1016/S0997-7538(00)01107-4
[19] Yang F.Q. (2001). Fracture mechanics for a Mode I crack in piezoelectric materials. Int. J. Solids Struc. 38: 3813–3830 · Zbl 0981.74019 · doi:10.1016/S0020-7683(00)00244-4
[20] Ding H.J., Chen B. and Liang J. (1996). General solutions for coupled equations for piezoelectric media. Int. J. Solids Struc. 33(16): 2283–2296 · Zbl 0900.73390 · doi:10.1016/0020-7683(95)00171-9
[21] Gradshteyn I.S. and Ryzhik I.M. (1980). Table of Integrals, Series and Products. Academic, New York · Zbl 0521.33001
[22] (1954). Tables of Integral Transforms[M]. Vol.1.. McGraw-Hill, New York · Zbl 0055.36401
[23] Itou S. (1978). Three dimensional waves propagation in a cracked elastic solid. J. Appl. Mech. 45(6): 807–811 · Zbl 0401.73087 · doi:10.1115/1.3424423
[24] Liu J.X., Liu X.L. and Zhao Y.B. (2001). Green’s functions for anisotropic magnetoelectroelastic solids with an elliptical cavity or a crack. Int. J. Eng. Sci. 39(12): 1405–1418 · Zbl 1210.74043 · doi:10.1016/S0020-7225(01)00049-0
[25] Gao C.F., Kessler H. and Balke H. (2003). Crack problems in magnetoelectroelastic solids. Part I: exact solution of a crack. Int. J. Eng. Sci. 41(9): 969–981 · Zbl 1211.74187 · doi:10.1016/S0020-7225(02)00323-3
[26] Ratwani M. and Gupta G.D. (1974). Interaction between parallel cracks in layered composites. Int. J. Solids Struc. 10(7): 701–708 · Zbl 0288.73072 · doi:10.1016/0020-7683(74)90034-1
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.