×

Height estimates for surfaces with positive constant mean curvature in \(\mathbb M^2\times\mathbb R\). (English) Zbl 1166.53039

Summary: We obtain height estimates for compact embedded surfaces with positive constant mean curvature in a Riemannian product space \(\mathbb M^2\times\mathbb R\) and boundary on a slice. We prove that these estimates are optimal for the homogeneous spaces \(\mathbb R^3\), \(\mathbb S^2\times\mathbb R\), and \(\mathbb H^2\times \mathbb R\) and we characterize the surfaces for which these bounds are achieved. We also give some geometric properties on properly embedded surfaces without boundary.

MSC:

53C42 Differential geometry of immersions (minimal, prescribed curvature, tight, etc.)
53A10 Minimal surfaces in differential geometry, surfaces with prescribed mean curvature

References:

[1] U. Abresch and H. Rosenberg, A Hopf Differential for Constant Mean Curvature Surfaces in \(\mathbb{S}^2\times \mathbb{R}\) and \(\mathbb{H}^2\times \mathbb{R}\), Acta Math. 193 (2004), 141-174. · Zbl 1078.53053 · doi:10.1007/BF02392562
[2] X. Cheng and H. Rosenberg, Embedded positive constant \(r\)-mean curvature hypersurfaces in \(\mathbb{M}^m\times\mathbb{R}\), An. Acad. Brasil. Cienc. 72 (2005), 183-199. · Zbl 1074.53049 · doi:10.1590/S0001-37652005000200001
[3] B. Daniel, Isometric immersions into \(\mathbb{S} ^n \times \mathbb{R}\) and \(\mathbb{H}^n \times \mathbb{R}\) and applications to minimal surfaces , to appear in T. Amer. Math. Soc. · Zbl 1213.53075 · doi:10.1090/S0002-9947-09-04555-3
[4] I. Fernández and P. Mira, A characterization of constant mean curvature surfaces in homogeneous 3-manifolds , Diff. Geom. Appl. 25 (2007), 281-289. · Zbl 1125.53007 · doi:10.1016/j.difgeo.2006.11.006
[5] J. A. Gálvez and A. Martínez, Estimates in surfaces with positive constant Gauss Curvature , P. Am. Math. Soc. 128 (2000), 3655-3660. JSTOR: · Zbl 0967.53008 · doi:10.1090/S0002-9939-00-05805-6
[6] J. A. Gálvez, A. Martínez and F. Milán, Linear Weingarten surfaces in \(\mathbb{R}^3\), Monatsh. Math. 138 (2003), 133-144. · Zbl 1056.53002 · doi:10.1007/s00605-002-0510-3
[7] E. Heinz, On the nonexistence of a surface of constant mean curvature with finite area and prescribed rectifiable boundary , Arch. Rational Mech. Anal. 35 (1969), 249-252. · Zbl 0184.32802 · doi:10.1007/BF00248159
[8] D. Hoffman, J. H. S. de Lira and H. Rosenberg, Constant mean curvature surfaces in \(\mathbb{M}^2\times\mathbb{R}\), Trans. Amer Math. Soc. 358 (2006), 491-507. · Zbl 1079.53088 · doi:10.1090/S0002-9947-05-04084-5
[9] N. Korevaar, R. Kusner, W. Meeks and B. Solomon, Constant mean curvature surfaces in hyperbolic space , Amer. J. Math. 114 (1992), 1-43. JSTOR: · Zbl 0757.53032 · doi:10.2307/2374738
[10] N. Korevaar, R. Kusner and B. Solomon, The structure of complete embedded surfaces with constant mean curvature , J. Differ. Geom. 30 (1989), 465-503. · Zbl 0726.53007
[11] B. O’Neill, Semi-Riemannian Geometry , Academic Press, New York, 1983.
[12] H. Rosenberg, Hypersurfaces of constant curvature in space forms , Bull. Sci. Math. 117 (1993), 211-239. · Zbl 0787.53046
[13] H. Rosenberg and R. Sa Earp, The geometry of properly embedded special surfaces in \(\mathbb{R}^3\); e.g., surfaces satisfying \(a H +b K =1\), where \(a\) and \(b\) are positive , Duke Math. J. 73 (1994), 291-306. · Zbl 0802.53002 · doi:10.1215/S0012-7094-94-07314-6
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.