×

RVE computations with error control and adaptivity: The power of duality. (English) Zbl 1161.74046

Summary: The goal of computational homogenization is to obtain the macro-scale response, normally in terms of macro-scale stress for given macro-scale deformation, via RVE-computations. In this paper we investigate, in a systematic manner, the effects of Dirichlet and Neumann boundary conditions on the RVE. Adaptive computations are carried out to control the error in the macro-scale stress tensor. This requires the corresponding dual solutions. As a new result, it is shown how the dual solutions can be conveniently used in computing the algorithmic tangent stiffness tensor, thereby demonstrating the “power of duality”.

MSC:

74Q05 Homogenization in equilibrium problems of solid mechanics
74S05 Finite element methods applied to problems in solid mechanics
74E30 Composite and mixture properties
Full Text: DOI

References:

[1] Aubry S, Fago M, Ortiz M (2003) A constrained sequential-lamination algorithm for the simulation of sub-grid microstructure in martensitic materials. Comput Methods Appl Mech Eng 192:2823–2843 · Zbl 1054.74697 · doi:10.1016/S0045-7825(03)00260-3
[2] Braack M, Ern A (2003) A posteriori control of modeling errors and discretization errors. Multiscale Model Simul 1:221–238 · Zbl 1050.65100 · doi:10.1137/S1540345902410482
[3] Becker R, Rannacher R (1996) A feed-back approach to error control in finite element methods: basic analysis and examples. East-West J Numer Math 4:237–264 · Zbl 0868.65076
[4] Eriksson K, Estep D, Hansbo P, Johnson C (1995) Introduction to adaptive methods for differential equations. Acta Numer 105–158 · Zbl 0829.65122
[5] Kouznetsova V, Geers MGD, Brekelmans WAM (2002) Multi-scale constitutive modelling of heterogeneous materials with a gradient-enhanced computational homogenization scheme. Int J Numer Methods Eng 54:1235–1260 · Zbl 1058.74070 · doi:10.1002/nme.541
[6] Larsson F, Runesson K (2004) Modeling and discretization errors in hyperelasto-(visco-)plasticity with a view to hierarchical modeling. Comput Methods Appl Mech Eng 193:5283–5300 · Zbl 1112.74525 · doi:10.1016/j.cma.2004.01.039
[7] Larsson F, Runesson K (2004) Error controlled meso–macro-scale material modeling and computation. In: Proccedings of 4th European congress on computational methods in applied sciences and engineering · Zbl 1112.74525
[8] Larsson F, Runesson K (2004) Meso–macro-scale constitutive modeling with error control. In: Proceedings CDROM of the sixth world congress on computational mechanics in conjunction with the second asian-pacific congress on computational mechanics · Zbl 1112.74525
[9] Larsson F, Hansbo P, Runesson K (2002) Strategies for computing goal-oriented a posteriori error measures in nonlinear elasticity. Int J. Numeri Methods Eng 55:879–894 · Zbl 1024.74041 · doi:10.1002/nme.513
[10] Löhnert S, Wriggers P, (2003) Homogenisation of microheterogeneous materials considering interfacial delamination at finite strains. Technische Mechanik 23:167–177
[11] Miehe C, Koch A, (2002) Computational micro-to-macro transitions of discretized microstructures undergoing small strains. Arch Appl Mech 72:300–317 · Zbl 1032.74010 · doi:10.1007/s00419-002-0212-2
[12] Miehe C, Schröder J, Schotte J (1999) Computational homogenization analysis in finite plasticity simulation of texture development in polycrystalline materials. Comput Methods Appl Mech Eng 171:387–418 · Zbl 0982.74068 · doi:10.1016/S0045-7825(98)00218-7
[13] Oden JT, Vemaganti KS (2000) Estimation of local modeling error and goal-oriented adaptive modeling of heterogeneous materials. J Comput Phys 164:22–47 · Zbl 0992.74072 · doi:10.1006/jcph.2000.6585
[14] Oden JT (2002) A posteriori estimation of modeling and approximation error in computational science and engineering: new tools for verification and validation of computer simulations. In: Proceedings of fifth world congress on computational mechanics
[15] Oden JT, Prudhomme S, Hammerand DC, Kuczma MS (2001) Modeling error and adaptiveity in nonlinear continuum mechanics. Comput Methods App Mech Eng 190:6663–6684 · Zbl 1012.74081 · doi:10.1016/S0045-7825(01)00256-0
[16] Stein E, Ohnimus S (1997) Coupled model- and solution-adaptivity in the finite-element method. Comput Methods Appl Mech Eng 150:327–350 · Zbl 0926.74127 · doi:10.1016/S0045-7825(97)00082-0
[17] Stein E, Ohnimus S (1999) Anisotropic discretization- and model-error estimation in solid mechanics by local Neumann problems. Comput Methods App Mech Eng 176:363–385 · Zbl 0954.74072 · doi:10.1016/S0045-7825(98)00345-4
[18] Stein E, Ohnimus S, Rüter M (2001) Hierarchical model- and discretization-error estimation of elasto-plastic structures. In: Aref H, Philips JW (eds) Mechanics for a new millenium. Kluwer Dordrecht
[19] Zohdi TI, Wriggers P (2005) Introduction to computational micromechanics. Springer, Berlin Heidelberg New York · Zbl 1085.74001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.