×

A domain decomposition solver for acoustic scattering by elastic objects in layered media. (English) Zbl 1145.74038

Summary: A finite element procedure is presented for accurately computing time-harmonic acoustic scattering by elastic targets buried in sediment. We use an improved finite element discretization based on trilinear basis functions leading to fourth-order phase accuracy. For sufficiently accurate discretizations, 100 million to 1 billion unknowns are required. The resulting systems of linear equations are solved iteratively using GMRES method with a domain decomposition preconditioner employing a fast direct solver. Due to the construction of discretization and preconditioner, iterations can be reduced onto a sparse subspace associated with the interfaces. Numerical experiments demonstrate capability to evaluate the scattered field with hundreds of wavelengths.

MSC:

74S05 Finite element methods applied to problems in solid mechanics
74J20 Wave scattering in solid mechanics

Software:

COMSOL; IIMPACK; UMFPACK
Full Text: DOI

References:

[1] Airaksinen, T.; Heikkola, E.; Pennanen, A.; Toivanen, J., An algebraic multigrid based shifted-Laplacian preconditioner for the Helmholtz equation, J. Comput. Phys., 226, 1196-1210 (2007) · Zbl 1310.76087
[2] Bamberger, A.; Joly, P.; Roberts, J. E., Second-order absorbing boundary conditions for the wave equation: a solution for the corner problem, SIAM J. Numer. Anal., 27, 323-352 (1990) · Zbl 0716.35036
[3] Banegas, A., Fast Poisson solvers for problems with sparsity, Math. Comp., 32, 441-446 (1978) · Zbl 0375.65046
[4] Banks, H. T.; Ito, K.; Kepler, G. M.; Toivanen, J. A., Material surface design to counter electromagnetic interrogation of targets, SIAM J. Appl. Math., 66, 1027-1049 (2006) · Zbl 1099.78007
[5] Banks, H. T.; Ito, K.; Toivanen, J. A., Determination of interrogating frequencies to maximize electromagnetic backscatter from objects with material coatings, Commun. Comput. Phys., 1, 362-382 (2006) · Zbl 1114.78313
[6] Börgers, C., A triangulation algorithm for fast elliptic solvers based on domain imbedding, SIAM J. Numer. Anal., 27, 1187-1196 (1990) · Zbl 0715.65088
[7] Comsol AB, COMSOL Multiphysics 3.3 Command Reference. Stockholm, 2006.; Comsol AB, COMSOL Multiphysics 3.3 Command Reference. Stockholm, 2006.
[8] Davis, T. A., Algorithm 832: UMFPACK V4.3—an unsymmetric-pattern multifrontal method, ACM Trans. Math. Software, 30, 196-199 (2004) · Zbl 1072.65037
[9] Elman, H. C.; Ernst, O. G.; O’Leary, D. P., A multigrid method enhanced by Krylov subspace iteration for discrete Helmhotz equations, SIAM J. Sci. Comput., 23, 1291-1315 (2001) · Zbl 1004.65134
[10] Erlangga, Y. A.; Oosterlee, C. W.; Vuik, C., A novel multigrid based preconditioner for heterogeneous Helmholtz problems, SIAM J. Sci. Comput., 27, 1471-1492 (2006) · Zbl 1095.65109
[11] Fibich, G.; Tsynkov, S., Numerical solution of the nonlinear Helmholtz equation using nonorthogonal expansions, J. Comput. Phys., 210, 183-224 (2005) · Zbl 1076.78008
[12] Fu, Y., Compact fourth-order finite difference schemes for Helmholtz equation with high wave numbers, J. Comput. Math., 26, 98-111 (2008) · Zbl 1174.65042
[13] Guddati, M. N.; Yue, B., Modified integration rules for reducing dispersion in finite element methods, Comput. Methods Appl. Mech. Eng., 193, 275-287 (2004) · Zbl 1075.76574
[14] W. Hackbusch, Multigrid methods and applications, in: Springer Series in Computational Mathematics, vol. 4, Springer-Verlag, Berlin, 1985.; W. Hackbusch, Multigrid methods and applications, in: Springer Series in Computational Mathematics, vol. 4, Springer-Verlag, Berlin, 1985. · Zbl 0595.65106
[15] Heikkola, E.; Kuznetsov, Y. A.; Neittaanmäki, P.; Toivanen, J., Fictitious domain methods for the numerical solution of two-dimensional scattering problems, J. Comput. Phys., 145, 89-109 (1998) · Zbl 0909.65119
[16] Heikkola, E.; Rossi, T.; Toivanen, J., Fast direct solution of the Helmholtz equation with a perfectly matched layer/an absorbing boundary condition, Int. J. Numer. Methods Eng., 57, 2007-2025 (2003) · Zbl 1035.65127
[17] Heikkola, E.; Rossi, T.; Toivanen, J., A parallel fictitious domain method for the three-dimensional Helmholtz equation, SIAM J. Sci. Comput., 24, 1567-1588 (2003) · Zbl 1035.65126
[18] Heikkola, E.; Rossi, T.; Toivanen, J., A domain embedding method for scattering problems with an absorbing boundary or a perfectly matched layer, J. Comput. Acoust., 11, 159-174 (2003) · Zbl 1360.76254
[19] Huynh, Q.; Ito, K.; Toivanen, J., A fast Helmholtz solver for scattering by a sound-soft target in sediment, (Domain Decomposition Methods in Science and Engineering XVI. Domain Decomposition Methods in Science and Engineering XVI, Lect. Notes Comput. Sci. Eng., vol. 55 (2007), Springer: Springer Berlin), 595-602
[20] F. Ihlenburg, Finite element analysis of acoustic scattering, in: Applied Mathematical Sciences, vol. 132, Springer-Verlag, New York, 1998.; F. Ihlenburg, Finite element analysis of acoustic scattering, in: Applied Mathematical Sciences, vol. 132, Springer-Verlag, New York, 1998. · Zbl 0908.65091
[21] K. Ito, J. Toivanen, Efficient domain decomposition method for acoustic scattering in multi-layered media, in: Proceedings of the Eccomas CFD 2006 Conference, Eccomas, Barcelona, 2006.; K. Ito, J. Toivanen, Efficient domain decomposition method for acoustic scattering in multi-layered media, in: Proceedings of the Eccomas CFD 2006 Conference, Eccomas, Barcelona, 2006.
[22] Ito, K.; Toivanen, J., Preconditioned iterative methods on sparse subspaces, Appl. Math. Lett., 19, 1191-1197 (2006) · Zbl 1176.65030
[23] Ito, K.; Toivanen, J., A fast iterative solver for scattering by elastic objects in layered media, Appl. Numer. Math., 57, 811-820 (2007) · Zbl 1112.76047
[24] Y.A. Kuznetsov, Matrix iterative methods in subspaces, in: Proceedings of the International Congress of Mathematicians, vol. 1, 2 (Warsaw, 1983), Warsaw, 1984, PWN, pp. 1509-1521.; Y.A. Kuznetsov, Matrix iterative methods in subspaces, in: Proceedings of the International Congress of Mathematicians, vol. 1, 2 (Warsaw, 1983), Warsaw, 1984, PWN, pp. 1509-1521. · Zbl 0569.65025
[25] Kuznetsov, Y. A., Numerical methods in subspaces, (Marchuk, G. I., Vychislitel’nye Processy i Sistemy II (1985), Nauka: Nauka Moscow), 265-350, (in Russian) · Zbl 0599.65069
[26] Kuznetsov, Y. A.; Lipnikov, K. N., 3D Helmholtz wave equation by fictitious domain method, Russ. J. Numer. Anal. Math. Model., 13, 371-387 (1998) · Zbl 0925.65185
[27] Y.A. Kuznetsov, A.M. Matsokin, Partial solution of systems of linear algebraic equations, in: Numerical methods in applied mathematics (Paris, 1978), “Nauka” Sibirsk. Otdel., Novosibirsk, 1982, pp. 143-163.; Y.A. Kuznetsov, A.M. Matsokin, Partial solution of systems of linear algebraic equations, in: Numerical methods in applied mathematics (Paris, 1978), “Nauka” Sibirsk. Otdel., Novosibirsk, 1982, pp. 143-163. · Zbl 0552.65025
[28] Larsson, E., A domain decomposition method for the Helmholtz equation in a multilayer domain, SIAM J. Sci. Comput., 20, 1713-1731 (1999) · Zbl 0936.65140
[29] Z. Li, K. Ito, The immersed interface method-numerical solution of PDEs involving interfaces and irregular domains, SIAM, Philadelphia, 2006.; Z. Li, K. Ito, The immersed interface method-numerical solution of PDEs involving interfaces and irregular domains, SIAM, Philadelphia, 2006. · Zbl 1122.65096
[30] C.L. Nesbitt, J.L. Lopes, Subcritical detection of an elongated target buried under a rippled interface, in: Proceedings of Oceans’04, vol. 4, IEEE, 2004, pp. 1945-1952.; C.L. Nesbitt, J.L. Lopes, Subcritical detection of an elongated target buried under a rippled interface, in: Proceedings of Oceans’04, vol. 4, IEEE, 2004, pp. 1945-1952.
[31] Plessix, R. E.; Mulder, W. A., Separation-of-variables as a preconditioner for an iterative Helmholtz solver, Appl. Numer. Math., 44, 385-400 (2003) · Zbl 1013.65117
[32] Rossi, T.; Toivanen, J., A nonstandard cyclic reduction method, its variants and stability, SIAM J. Matrix Anal. Appl., 20, 628-645 (1999) · Zbl 0929.65011
[33] Rossi, T.; Toivanen, J., A parallel fast direct solver for block tridiagonal systems with separable matrices of arbitrary dimension, SIAM J. Sci. Comput., 20, 1778-1796 (1999) · Zbl 0931.65020
[34] Saad, Y.; Schultz, M. H., GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM J. Sci. Stat. Comput., 7, 856-869 (1986) · Zbl 0599.65018
[35] Smith, B. F.; Bjørstad, P. E.; Gropp, W. D., Domain Decomposition (1996), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0857.65126
[36] Vassilevski, P. S., Fast algorithm for solving a linear algebraic problem with separable variables, C.R. Acad. Bulg. Sci., 37, 305-308 (1984) · Zbl 0575.65022
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.